

AFRL-RI-RS-TR-2010-080
Final Technical Report
March 2010

SIMULATION FOR DYNAMIC SITUATION
AWARENESS AND PREDICTION III

Northrop Grumman Space & Mission Systems Corp.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the 88th ABW, Wright-Patterson AFB
Public Affairs Office and is available to the general public, including foreign nationals.
Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2010-080 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/
DAWN TREVISANI JULIE BRICHACEK, Chief
Work Unit Manager Information Systems Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

MARCH 2010
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

March 2006 – September 2009
4. TITLE AND SUBTITLE

SIMULATION FOR DYNAMIC SITUATION AWARENESS AND
PREDICTION III

5a. CONTRACT NUMBER
FA8750-06-C-0017

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62702F

6. AUTHOR(S)

Kevin Trott

5d. PROJECT NUMBER
459S

5e. TASK NUMBER
N6

5f. WORK UNIT NUMBER
01

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Northrop Grumman Space & Mission Systems Corp.
2340 Dulles Corner Blvd.
Herndon, VA 20171-3415

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/RISB
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
 N/A

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2010-080

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# 88ABW-2010-1107 Date Cleared: 12-March-2010

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This is a Final Technical Report documenting the Simulation for Dynamic Situation Awareness and Prediction (DSAP) III project,
and the lessons learned during its performance. It is submitted by Northrop Grumman Corp. for the Air Force Research Laboratory
(AFRL), Decision Support Systems Branch (RISB), under Contract FA 8750-06-C-0017, in accordance with CLIN 0002, CDRL
A006. This report includes tasks such as the Joint Synthetic Battlespace for Research and Development (JSB-RD) distributed
simulation environment and describes the scenarios that were generated and exercises using that capability; the JView Coordinate,
Orientation, and Vector Conversion Services software; the Distributed Mission Operations (DMO) Test Harness (DMOTH)
software; and the NSim simulation software, and how it was interfaced with the JSB-RD distributed simulation environment.
Lessons learned, conclusions and recommendations are presented.

15. SUBJECT TERMS
Operationally focused simulation; Decision support; Distributed simulation environment, JView Coordinate, Orientation, and Vector
Conversion Services software; Distributed Mission Operations (DMO) Test Harness (DMOTH).

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

96

19a. NAME OF RESPONSIBLE PERSON
Dawn Trevisani

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

i

TABLE OF CONTENTS

1 Introduction ..1
2 Joint Synthetic Battlespace for Research and Development ..2

2.1 JSB-RD Overview ..2
2.2 JSB-RD Components ...4

2.2.1 JSAF – Joint Semi-Automated Forces ..5
2.2.2 OASES ..11
2.2.3 Culture/Clutter Simulation ..13
2.2.4 DTSim ..14
2.2.5 ModStealth ..14
2.2.6 MARCI ...16
2.2.7 HLA-to-DIS Gateway ...16
2.2.8 SIMPLE ..16
2.2.9 HLA-to-XML Gateway ..16
2.2.10 Integrated Situation Viewer ..17
2.2.11 TBMCS-to-JSAF ..19
2.2.12 Route Planner ..20
2.2.13 GIESim ...20
2.2.14 Logging and Analysis ...21

2.3 Example Scenario ..21
2.3.1 Scenario Development ..22
2.3.2 Scenario Execution ...24
2.3.3 Scenario Analysis ...29

3 JView Coordinate, Orientation, and Vector Conversion Services33
3.1 Background ..33
3.2 Implementation ..37

3.2.1 JView Coordinate Conversion Service ...37
3.2.2 JView Orientation and Vector Conversion Service ..42

4 Distributed Mission Operations (DMO) Test Harness (DMOTH)....................................51
5 Network-Centric SimulaTion (NSIM) ...59
6 Lessons Learned, Conclusions, and Recommendations ...72
7 Referenced Documents ..76
8 Acronyms and Abbreviations ...77
9 Glossary ..83

ii

LIST OF FIGURES

Figure 1: JSB-RD Overall Architecture .. 3
Figure 2: JSB-RD Components... 4
Figure 3: JSAF Plan View Display with Air Dynamics Editor .. 6
Figure 4: OASES Weather Visualization .. 13
Figure 5: ModStealh Perspective View .. 15
Figure 6: ModStealth Control Panel ... 15
Figure 7: Map View GUI, Including Lens .. 18
Figure 8: Magnified Map View .. 19
Figure 9: Master Entity List .. 23
Figure 10: Califon Air Defense Coverage Areas .. 24
Figure 11: Target Nomination List ... 25
Figure 12: Mission List ... 25
Figure 13: Functional Configuration ... 26
Figure 14: Califon IADS Modeled in JSAF .. 27
Figure 15: Initial Entity Locations .. 27
Figure 16: Cruise Missiles in Flight .. 28
Figure 17: Santiago Peak SA-5 Site .. 28
Figure 18: Ground Scenario Locations ... 29
Figure 19: Key Scenario Events.. 32
Figure 20: GEOTRANS Application GUI .. 34
Figure 21: GEOTRANS Software Architecture ... 35
Figure 22: JView CCS Public API .. 38
Figure 23: JView GEOTRANS 3.0J Application GUI ... 40
Figure 24: JView Orientation and Vector Conversion Service API ... 44
Figure 25: Axis-Angle Representation of Orientation .. 45
Figure 26: Euler Angle Z-X-Z Representation of Orientation .. 46
Figure 27: Tait-Bryan Angle Representation of Orientation .. 48
Figure 28: JVIEW OVCS GEOTRANS 3.0J Application GUI .. 50
Figure 29: DMOTH System Configuration .. 51
Figure 30: DMOTH Software Architecture .. 52
Figure 31:DMOTH Sender/Receiver Application Running ... 56
Figure 32: DMOTH Controller Application Running .. 56
Figure 33: Results Database, Master Sent Packets Table ... 57
Figure 34: NSim Architecture ... 59
Figure 35: NSim Entity and Event Types ... 60
Figure 36: NSim Scenario Database Population Methods .. 61
Figure 37: BaseEntity, PhysicalEntity, and Blip Classes .. 63
Figure 38: Communication Classes and Interactions .. 64
Figure 39: Sensor Classes and Interactions ... 65
Figure 40: Combat Classes and Interactions ... 66
Figure 41: EntityAttribute Table Mapping ... 67
Figure 42: Entity State Events Table Mapping ... 68
Figure 43: Entity Movement Events Table Mapping .. 68
Figure 44: B-52s Launching Cruise Missiles .. 70
Figure 45: SA-5 Site ... 71

iii

LIST OF TABLES

Table 1: JSAF Aircraft/Munition/Mission Test Results ... 10
Table 2: Required Coordinate System Types ... 36
Table 3: Coordinate Conversion Performance .. 42
Table 4: NSim Scenario Database Tables ... 62

1

1 INTRODUCTION
This Final Technical Report documents the Simulation for Dynamic Situation Awareness and
Prediction (DSAP) III project, and the lessons learned during its performance. It is submitted by
Northrop Grumman for the Air Force Research Laboratory (AFRL), Decision Support Systems
Branch (RISB), under Contract FA8750-06-C-0017, in accordance with CLIN 0002, CDRL
A006.

The remainder of this report is organized as follows:

• Section 2 discusses the Joint Synthetic Battlespace for Research and Development (JSB-RD)
distributed simulation environment, and the scenarios that were generated using that
capability;

• Section 3 discusses the JView Coordinate, Orientation, and Vector Conversion Services
software;

• Section 4 discusses the Distributed Mission Operations (DMO) Test Harness (DMOTH)
software;

• Section 5 discusses the NSim simulation software, and how it was interfaced with the JSB-
RD distributed simulation environment;

• Section 6 presents lessons learned, conclusions, and recommendations;

• Section 7 provides notes, including a glossary and an acronym list; and

• Section 8 lists the documents referenced in this report.

2

2 JOINT SYNTHETIC BATTLESPACE FOR RESEARCH AND DEVELOPMENT
This section discusses the Joint Synthetic Battlespace for Research and Development (JSB-RD),
a simulation capability assembled from a number of existing tools and components. It is
organized as follows:
• Section 2.1 provides an overview of the JSB-RD distributed simulation environment.
• Section 2.2 describes each of the components of the JSB-RD distributed simulation

environment.
• Section 2.3 provides a walkthrough of the system’s operation, based on an example scenario.

2.1 JSB-RD Overview
The purpose of the JSB-RD distributed simulation environment is to provide a testbed for C4ISR
research, experimentation and evaluation at AFRL/RI. Its goals include exploring the use of
simulations synchronized to real-world data for the prediction of future events, as well as
research into various aspects of simulation science, including:

• Adversarial modeling,

• Information management, and

• Visualization.

The JSB-RD distributed simulation environment was constructed primarily by integrating
existing simulations and tools. The central component of the JSB-RD distributed simulation
environment is the Joint Semi-Automated Forces (JSAF) simulation software. JSAF is a
computer generated forces (CGF) system that is used by the U.S. Joint Forces Command for
joint experimentation. The JSB-RD environment also includes the Ocean, Atmosphere, and
Space Environmental Services (OASES) system, which models weather, and the Dynamic
Terrain Simulation (DTSim), which models changes to the environment such as bomb craters,
damage to buildings, and the creation and destruction of obstacles, as well as a culture/clutter
simulation, which models civilian vehicle and personnel traffic. The environment also includes
tools for creating scenarios from existing Air Battle Plans, extracted from the Air Operations
Data Base (AODB) within the Theater Battle Management Core System (TBMCS), as well as
gateways for connecting simulations communicating using the High Level Architecture (HLA)
and/or the earlier Distributed Interactive Simulation (DIS) protocol, with C4ISR systems, using a
variety of different mechanisms.

As noted above, the JSB-RD distributed simulation environment consists of a number of
components, which are connected together using several different mechanisms. Fundamentally,
the environment is an HLA federation made up of simulations that communicate using a
variation of the Joint Urban Operations (JUO) Federation Object Model (FOM). Simulations that
still use the DIS protocol can be connected through a DIS-HLA gateway federate. Similarly, an
HLA-JBI gateway allows the federation to communicate with C4ISR system component
prototypes being developed at AFRL. Finally, selected Link-16 messages can be generated using
an Army software application named SIMPLE.

3

The overall architecture of the JSB-RD distributed simulation environment is shown in Figure 1.
It consists of three primary components, addressing each of the three primary aspects of any
simulation environment.

Figure 1: JSB-RD Overall Architecture

At the bottom, the Preparation component addresses experiment planning, scenario preparation,
and all other aspects of preparing a simulation experiment. This includes accessing, extracting,
and manipulating various kinds of source data, including Air Battle Plan (ABP) and Friendly Air
Order of Battle information contained in the AODB, and Enemy Order of Battle (EOB)
information contained in the Modernized Integrated Database (MIDB), as well as geospatial
data. This also includes emulating the detailed mission planning that normally is performed at
the unit level. In the middle are the components that address the execution phase of a simulation
experiment. These consist of the various simulations that make up the JSB-RD environment, as
well as real C4ISR systems, system components, or prototypes. Note that the C4ISR component
can also include an embedded simulation within it, used for COA analysis or other forms of
prediction. The simulation and C4ISR components communicate with one another in both
directions. The states of friendly entities, and of visible opposing entities, and the effects of any
relevant scenario events, are reported by the simulation to the C4ISR system, via various
modeled sensor and communication systems. As the C4ISR system issues commands, they are
passed back to the simulated entities that are to carry them out. In the center, visualizing the state
of the simulation, as well as the plans and perceptions of the C4ISR system, either separately or
together is the Integrated Situation Viewer application.

At the top, the Evaluation component provides a collection of tools for analyzing data produced
by both the simulation and C4ISR systems. This component addresses the post-execution aspects
of a simulation experiment. It remains the least developed part of the JSB-RD environment.

4

2.2 JSB-RD Components
The components of the JSB-RD distributed simulation environment are shown in Figure 2.

Figure 2: JSB-RD Components

JSAF, OASES, GIESim, and several supporting simulations make up an HLA federation. The
HLA-to-XML Gateway translates the federation message traffic into an XML stream that can be
easily read by a variety of applications. One such application is the Integrated Situation Viewer,
which receives and displays entity state and interaction information. The Simulation Preparation
tool extracts Air Battle Plan and Friendly Order of Battle information from the AODB, and
Enemy Order of Battle information from the MIDB, which it then uses to generate a scenario
input spreadsheet that can be read by JSAF to create and task the necessary simulation entities.
The Simulation Preparation tool also interfaces with an aircraft route-planning tool created at
AFRL to generate more realistic air mission flight paths that avoid known threats.

5

2.2.1 JSAF – Joint Semi-Automated Forces
JSAF is the primary simulation used within the JSB-RD environment. JSAF is an entity-level,
computer generated forces (CGF) simulation system that is used by the U.S. Joint Forces
Command for joint experimentation, by the U.S. Navy for Fleet Battle Experiments, and by the
AFRL Human Effectiveness Directorate (AFRL/RH) in support of the Distributed Mission
Training (DMT) program. JSAF provides entity-level simulation of ground, air, and naval forces.
It has been used by JFCOM to simulate more than 100,000 entities within a single distributed
simulation. It has also been used to support a variety of experiments with environment
simulation, including dynamic terrain (i.e., craters, trenches, etc.), weather, and
chemical/biological warfare defense. JSAF was originally developed by DARPA as part of its
Synthetic Theater of War (STOW) program, and is descended from ModSAF. JSAF is
maintained by the Joint Forces Command (JFCOM).

JSAF is an extremely large software application. It was originally developed approximately 20
years ago, in C, and has been extensively modified and extended. As a result, its original
architecture has been almost completely obscured. It now consists of more than 1000 object
libraries that model different types of platforms, weapons, sensors, etc. While it contains a great
deal of powerful simulation functionality, it is very difficult to use, and even more difficult to
modify. Documentation and support are both extremely limited.

JSAF runs under the Linux operating system. In the JSB-RD environment, JSAF can be run on
multiple Linux systems simultaneously. The individual copies function together as a single HLA
federate, keeping their separate internal database copies in synchronization, and sharing the
computational load.

The primary input to JSAF is a spreadsheet file that defines a collection of entities, both friendly
and enemy, to be created, and specifies how each entity is to be tasked. Entity types, initial
locations, call signs, and assigned tasks are identified. Such spreadsheets can be prepared by
hand. However, they can also be automatically generated from Air Battle Plan information,
supported by Friendly and Enemy Order of Battle information, extracted from the AODB and
MIDB within TBMCS.

JSAF scenarios can also be created interactively, using its integral Unit Editor. Individual entities
and small units can be created, placed on the Plan View Display (PVD), and assigned tasks to
perform. Interactively created scenarios can be saved and (re)loaded. However, such scenarios
and the scenario spreadsheets are two separate mechanisms, and cannot be readily combined.

JSAF is capable of receiving and processing several types of information via HLA. This includes
entity state information output by other simulations within the federation. For example, JSAF
reads the states of civilian vehicles and pedestrians that are modeled by the clutter simulation,
and displays them on the JSAF Plan View Display. Any such external entities are visible to the
JSAF-controlled entities; they can be detected, fired at, collided with, etc. JSAF also reads the
weather state information output by OASES although most platform and equipment models
within JSAF do not make use of such information. JSAF also reads messages describing changes
to the terrain that are output by DTSim. Such dynamic terrain changes (e.g., the appearance of a
bomb crater) can affect the movement of ground vehicles in JSAF.

6

The primary output of JSAF is entity state information for all of the entities that it models. It also
outputs various types of interactions, including weapons fire and detonation, collision, etc. In
support of various exercises and experiments, JSAF has been extensively modified to support
additional FOMs. It includes an extensive FOM agility layer. Many of its outputs are platform-
or weapon-system specific.

Figure 3: JSAF Plan View Display with Air Dynamics Editor

Figure 3 shows the JSAF PVD, with a map background (showing part of Baghdad) and platform-
level icons. The toolbar at the upper left provides access to a variety of tools for creating,
tasking, and otherwise manipulating the simulated entities. Multiple copies of the JSAF PVD can
be run simultaneously. Commonly, some JSAF GUIs are congifured as controller workstations,
which see and can manipulate all entities, while others are configured as “player” workstations,
which can see only their own forces, as well as any enemy forces that have been detected.

7

The JSB-RD simulation environment currently uses a version of the Joint Urban Operations
(JUO) federation object model (FOM). The JUO FOM was developed by JFCOM for use in the
Joint Urban Resolve exercise. It is based on the Realtime Platform Reference (RPR) FOM,
which was designed to map the original DIS protocols into an HLA environment. The JUO FOM
includes a number of objects and interactions that were added to support specific aspects of the
Millenium Challenge 2002 (MC02) and Joint Urban Resolve exercises. Most of these are not
currently used within the JSB-RD environment. The JUO FOM elements that are currently used
include:

• the BaseEntity/PhysicalEntity/Platform class, primarily the GroundVehicle and Aircraft
subclasses,

• the Atmosphere, SurfaceWeather, and Weather classes, and their various subclasses,

• the Collision, Weapon Fire, and Munition Detonation interactions, and

• the GIESim Entity State, Message Send, and Message Received interactions.

While developing JSAF scenarios, aircraft/ordnance/mission combinations that don’t appear to
work properly together were encountered frequently enough to warrant compiling a table of
combinations of interest and evaluating their functionality.

A list of aircraft and weapon types from the “Air Force 2015 Plan” that are supported by JSAF
2004 was compiled, and cross-indexed with a list of JSAF-supported mission types from the
“Force Level Operational Mission Models, Rev 5” (FLOMMR) document. Each combination
was flown under controlled conditions and rated “successful,” “broken,” or “conditional.” Any
combination rated as other than “successful” was re-flown under various conditions and the
rating adjusted as appropriate.

Of primary interest was how the aircraft entities in question interacted with other entities during
a simulation – especially combat interactions. With that interest in mind mission types were first
divided into two main categories: combat and non-combat. The combat category was further
divided into air-to-ground missions and air-to-air missions. In the non-combat category aerial
refueling was of special interest, while the rest of such missions were grouped as “other.”

Air-to-ground missions: the FLOMMR defines two forms of ground attack, “Direct Attack”
and “Standoff Attack.” JSAF has no such mission categories, providing rather (with some few
exceptions) mission types of “Interdiction,” “Strike,” and “Target of Opportunity.” There
seemed to be little difference between Interdiction and Strike missions in JSAF, although aircraft
executing the Strike mission generally seemed to launch ordnance at greater ranges than while
executing the Interdiction mission with the same weapon.

8

For the purpose of this evaluation a mission was considered to have been flown successfully if an
aircraft/ordnance pairing successfully delivered the ordnance (regardless of whether a hit was
scored) against first a T-72 tank, and then (if the aircraft failed to launch against the T-72)
against an SA-10 launcher. A “conditional” result was scored if a mission was successful against
one type of target while unsuccessful against the other. In all cases the attacking aircraft was
given a lengthy, straight approach to the target using mission defaults (as defined by JSAF) for
speed and altitude. Before either a “conditional” or “broken” result was decided a mission was
re-flown multiple times, using varying approach distances and altitudes, in an attempt to mitigate
possible limitations in a weapon’s intended delivery envelope.

Air-to-air missions: The related FLOMMR categories are “Escort” and “Station.” In JSAF
terms, multiple mission types (often aircraft-dependent) are defined that relate to (direct or
potential) air-to-air combat as their focus. JSAF provides one direct mission match in the form
of “Escort Designated Aircraft,” as well as “Station type” missions in the form of “DCA/OCA”
and “TCP CAP.” It provides a direct combat-intent mission, “Intercept/Attack Designated
Aircraft,” and the more generic “Target of Opportunity” mission. In a more general sense,
almost any mission should result in the aircraft launching on a perceived airborne target within
weapons range if the aircraft’s weapons permission is set to “Free” manually by the operator
after the mission is assigned.

For the purpose of this evaluation a mission was considered to have been flown successfully if an
aircraft attacked a provided target aircraft with available weaponry, regardless of whether the
attack actually destroyed the target. If an aircraft failed to launch against a target the mission
was re-flown multiple times at various ranges and altitudes in an attempt to mitigate possible
limitations in a weapon’s intended delivery envelope.

Tanker missions: This mission type was evaluated both from the perspective of the tanker
aircraft itself and from that of the combat aircraft taking on fuel. For a tanker to fly a successful
mission it had to assume a suitable orbit and deliver fuel when requested. For a combat aircraft
to fly a successful mission it was required to rendezvous with a designated tanker and then to
actually take on fuel.

Other missions: The other types of FLOMMR missions either did not map well to JSAF
mission types, or did not entail interactions of the type that could be represented by JSAF
running as a stand-alone simulation. For that reason they were not evaluated.

The results are summarized in Table 1. There was a consistent failure of aircraft to employ guns
or cannons in attacking targets, even when guns were specifically enabled while assigning a
mission. This failure resulted in aircraft with all-cannon armament, such as the AC-130H
Gunship, to be ineffective in any assigned combat mission.

During successful combat missions the aircraft did not need to be manually set to weapons free
mode. That mode would automatically change to “Free” at the appropriate time, then revert to
“Hold” after weapons release.

9

Nearly all air-to-ground missions were eventually completed successfully. There were some
unusual behaviors observed, which are described in the spreadsheet “Notes” column. In most
cases where entities were not initially attacked, it was possible to correct the behavior by
zooming in very closely to the target(s) and placing the attack point precisely beneath a target
vehicle. This requirement seemed to be munitions-dependent (most notable with respect to the
GBU10 bomb), as in many cases it was sufficient to place the target marker over the area of a
target vehicle group while zoomed out to a wider-scale view. In the case of a mission where
attacking was a reactive behavior, such as the “Target of Opportunity” mission, the aircraft
became confused by multiple task frame switching and never reacted to the target vehicle. In
one special case, the UAV Predator executing a “Predator Strike” mission, the ordnance launch
was ruled unsuccessful because the missile consistently flew well past the target as though never
properly aimed. This is distinct from a “miss” where the ordnance might explode in the vicinity
of the target but fail to do damage.

The most notable result of the air-to-air combat missions was the complete failure of the
“Intercept and Attack” mission. In every case the attacking aircraft would successfully intercept
the target aircraft, but would then simply follow along in close proximity without attacking. In a
similar vein, aircraft given the “Escort” mission would fly in close formation with the escorted
aircraft, but would fail to engage any attacking aircraft, regardless of whether it or its charge
were attacked. In cases where weapons permission was manually set to Free weapons would
usually (but not always) be launched if the attacking aircraft happened to approach within
weapons envelope of the escorting aircraft (such as a nose-to-nose intercept), but the escort never
executed any actual attack reaction. Two very successful reactive missions were the
“DCA/OCA” and “Target of Opportunity” missions. In each case the aircraft would switch to
attack mode as it perceived a hostile aircraft, and then successfully engage with missile fire. The
“TCP CAP” mission was of marginal utility as the aircraft had to be set manually to weapons
free and a target would have to happen across its field of fire before a weapon would be
launched.

Aerial refueling generally worked well—with one caveat. In the JSAF implementation the
refueling aircraft must remain connected to the tanker for the entire duration of the process, and
then all of the fuel is transferred in a single instant at disconnect time. This is obviously a design
decision, with the unfortunate result that if an aircraft were to be called away from refueling after
expending, say, half of the normal time it would not benefit from receiving 50 percent of a
normal fuel load.

For the most part the missions detailed in this study can be successfully executed in JSAF. In the
cases where a given aircraft/munitions/mission combination seems to be non-functional, a work-
around or technique has been described which will result in success; in the cases where no such
remedy was discovered those combinations have been documented so that they can be avoided.

10

Table 1: JSAF Aircraft/Munition/Mission Test Results

Aircraft Munition(s) Interdiction Strike Tgt of Opp Refuel DCA/OCA Intercept TPT CAP Escort Orbit
A/OA-10A Thunderbolt II AGM65 Maverick success success success broken N/A N/A N/A N/A Note 3
AC-130H Gunship M50 20mm broken broken N/A N/A N/A N/A N/A N/A broken
AC-130U Gunship PGU22 25mm ? ? ? N/A N/A N/A N/A N/A ?

PFHE 40mm ? ? ? N/A N/A N/A N/A N/A ?
M546 105mm success success success N/A N/A N/A N/A N/A Note 3

Airborne Laser (AL-1) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
B-1 Bomber JDAM success success success success N/A N/A N/A N/A Note 3

AGM154B (JSOW-B) success success success success N/A N/A N/A N/A Note 3
CBU103 CEM success success success success N/A N/A N/A N/A Note 3

B-2 Spirit JDAM success success success success N/A N/A N/A N/A Note 3
B-52H Stratofortress JDAM success success success success N/A N/A N/A N/A Note 3

Mk82 500lb Bomb success success success success N/A N/A N/A N/A Note 3
C-130H Hercules N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
C-130 Hercules N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
C-17 Globemaster III N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
C-5 Galaxy N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
CV-22 Osprey N/A N/A N/A N/A success N/A N/A N/A N/A N/A
E-3 AWACS N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
E-8 JSTARS N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
EC-130E ABCCC N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
EC-130H Compass Call N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
F-117A Nighthawk GBU10 2000lb Bomb success success success success N/A N/A N/A N/A Note 3
F-15C Eagle Air-to-air missiles N/A N/A Note 1 success Note 1 Note 2 Note 3 Note 4 Note 3
F-15E Strike Eagle JDAM success success success success N/A N/A N/A N/A Note 3

GBU10 2000lb Bomb success success success success N/A N/A N/A N/A Note 3
CBU105 SFW success success success success N/A N/A N/A N/A Note 3
AGM65 Maverick success success success success N/A N/A N/A N/A Note 3
AGM88 Harm success success success success N/A N/A N/A N/A Note 3
Air-to-air missiles N/A N/A Note 1 success Note 1 Note 2 Note 3 Note 4 Note 3

F-16C Fighting Falcon AGM65 Maverick success success success success N/A N/A N/A N/A Note 3
CBU105 SFW success success success success N/A N/A N/A N/A Note 3
JDAM success success success success N/A N/A N/A N/A Note 3
CBU104 GATOR success success success success N/A N/A N/A N/A Note 3
GBU10 2000lb Bomb success success success success N/A N/A N/A N/A Note 3
Air-to-air missiles N/A N/A Note 1 success Note 1 Note 2 Note 3 Note 4 Note 3

F-16CJ Fighting Falcon AGM88 Harm broken broken N/A N/A N/A N/A N/A N/A broken
F-35A Joint Strike Fighter JDAM success success success success N/A N/A N/A N/A Note 3

Air-to-air missiles N/A N/A Note 1 success Note 1 Note 2 Note 3 Note 4 Note 3
F/A-22 Raptor JDAM success success success success N/A N/A N/A N/A Note 3

Air-to-air missiles N/A N/A Note 1 success Note 1 Note 2 Note 3 Note 4 Note 3
HH-60X N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
KC-10A Extender N/A N/A N/A N/A orbits OK N/A N/A N/A N/A N/A
KC-135 Stratotanker N/A N/A N/A N/A orbits OK N/A N/A N/A N/A N/A
MC-130P Combat Shadow N/A N/A N/A N/A broken N/A N/A N/A N/A N/A
RC-135 Rivet Joint N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
UAV Global Hawk (RQ-4) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
J-UCAS FGB Note 5 N/A N/A N/A N/A N/A N/A N/A Note 5

FSWC success N/A N/A N/A N/A N/A N/A N/A N/A
FSWS broken N/A N/A N/A N/A N/A N/A N/A broken
SSB Note 5 N/A N/A N/A N/A N/A N/A N/A Note 5
FLAW Pod Note 5 N/A N/A N/A N/A N/A N/A N/A Note 5
NCAS Note 5 N/A N/A N/A N/A N/A N/A N/A Note 5

UAV Predator AGM114 Hellfire N/A broken N/A N/A N/A N/A N/A N/A broken

Notes
1 success; switches to attack reaction and engages; guns don't work
2 intercepts target but doesn't attack
3 will launch on targets that come into range/view if permission manually set weapons free
4 forms on escortee, but does not react to viable enemy targets/attackers
5 insists on trying to use FSWC, doesn't try specified munition

11

The advantages of using JSAF as the central component of the JSB-RD distributed simulation
environment include:

• It supports a very wide variety of entity types, including ground forces, aircraft, ships,
satellites, lifeforms.

• Entities include components such as sensors, comm, weapons, decision logic, etc.

• It supports complete units, as well as individual entities, including communication
networks.

• It provides a large collection of automated tasks and behaviors at both the unit and entity
level, using finite state models.

• It provides three different scenario creation mechanisms:

– Plan View Display

– Spreadsheet Mechanism

– Dynamic Retasking – via the Viewer

However, JSAF also has significant disadvantages, which include:

• JSAF consists of a very large library of very old code written in C with some C++; it is
extremely difficult to understand, modify or extend.

• Many of the behaviors provided by JSAF are incomplete or broken; JFCOM maintains
JSAF only with respect to its current exercise objectives, rather than as a general-purpose
capability. Behaviors and other functionality that are not immediately needed are often
damaged in the course of meeting short-term objectives.

• Considerable trial and error is often involved in scenario development

2.2.2 OASES
The OASES system is a suite of applications for creating and managing a three-dimensional,
time-varying, digital representation of the natural environment. OASES has been used primarily
to provide synthetic natural environments (SNEs) to systems of networked military training
simulations running on the Department of Defense’s (DoD) High Level Architecture (HLA). The
simulated natural environments created by OASES are based on authoritative, validated
numerical models, typically the same models that are used by METeorological/OCeanographic
(METOC) personnel in support of real-world military operations. OASES provides tools for
converting authoritative model outputs to a data format recognized by all of the OASES
applications. This format supports the data access requirements of distributed simulations that
integrate virtual and/or live entities and which must operate in real-time. Additionally, OASES
provides tools for tailoring the SNE, either before the simulation begins or while it is running, to
meet exercise-specific requirements for environmental phenomena.

12

The original development of the OASES system was sponsored by the Defense Advanced
Research Project Agency (DARPA), under the name TAOS (Total Atmosphere Ocean Services),
in support of the Synthetic Theater of War (STOW) 1997 Program. In 1998, DARPA funded the
development of a low-resolution worldwide atmospheric and oceanographic database, also
known as the Global-98 database, for use by the JSIMS program. In 1999, the United States
Space Command’s (USSPACECOM) Space Warfare Center funded extensions to TAOS to
support the space environment, specifically ionospheric effects on precision-guided missiles, as
part of the PSM+ (extended Portable Space Model) project. More recently, funding for continued
development and integration with the HLA, under the name OASES, has been provided
primarily through the Environment Federation (EnviroFed) projects.

The OASES system consists of five primary subsystems. The OASES Ingestor converts all input
model data to a common run-time format that is recognized by all OASES subsystems. The
OASES Transformer uses a set of transformation algorithms to augment existing OASES
databases with various environmental parameters that are not provided directly by an external
data source, but that are required by the simulations served by OASES. The OASES Editor
allows users to tailor the contents of an OASES database. The Editor provides three editing
algorithms: 1) replacement at a point with gaussian spatial and temporal blending, 2) a Pressure
Field Modification (PFM) algorithm for editing atmospheric environments while preserving
correlation between temperature, pressure, wind and relative humidity, and 3) a precipitation
editing algorithm. The Editor can be used to prepare scripted changes to an existing METOC
scenario, or it can be used at run-time to modify the SNE during a simulation exercise. The
OASES Time Federate and Publisher are the subsystems that interface directly to the HLA
Federation; that is, they are the OASES Federates. They create and update the objects that
encapsulate the state of the simulated natural environment via services provided by the RTI. The
Time Federate creates objects that establish the time-dependence of the SNE while the Publisher
manages objects that encapsulate its spatial-dependence.

13

Figure 4: OASES Weather Visualization

The OASES Visualizer is a tool for visualizing the contents of an OASES database. It is used to
validate databases built by the Ingestor and/or extended by the Transformer, to review the results
of edits applied by the OASES Editor, to monitor the current state of the SNE created by the
Publisher, and/or to monitor the current state of the SNE as received by the OASES Subscriber.
An example of an OASES Visualizer display is shown in Figure 4.

Finally, the OASES Receiver is responsible for polling local or remote data sources, using the
Internet File Transfer Protocol (FTP), for environmental data transmittals matching a user-
specified file-naming pattern. The Receiver is the subsystem that supports the“Live Mode” of
OASES, in which the simulated natural environment is continuously updated based on the data
received from current and forecast environmental models running in real-time.

Within the JSB-RD environment, OASES is used to bring in weather information from Air Force
and Navy sources. OASES outputs weather state information, including temperature, pressure,
and precipitation information, in one-dimensional (profile), two-dimensional (surface), and
three-dimensional forms, over HLA. This information is read by JSAF and DTSim, which use it
to modify some military operations, and to implement changes to the terrain database,
respectively.

2.2.3 Culture/Clutter Simulation
The Culture/Clutter simulation, which is part of the JSAF distribution, models the movements of
civilian vehicles and pedestrians. The amount and type of clutter is specified using clutter
templates. Each template specifies a list of entity types with associated relative weights, as well
as a collection of control points. Each control point specifies a center location, a radius (defining
a circular area), and a number of clutter entities. Each control point is identified as defining a

14

static clutter area, a mobile clutter area, a clutter source, or a clutter sink. Clutter entities move
randomly with a static clutter area. Sources and sinks allow dynamic traffic flows to be created.
Clutter etities are randomly created in the source areas, and move to random locations within a
sink area. When they arrive, they are destroyed and replaced with a new entity in one of the
source areas. The clutter simulation publishes entity state information for each of the clutter
entities as they move.

In support of the JFCOM Urban Resolve joint experiment, the Culture/Clutter simulation was
significantly enhanced to support a wide variety of clutter entities, including both vehicles and
lifeforms. Templates can be defined that specify the movements of clutter entities at specific
times. These templates can be used to more realistically model civilian traffic movements such
as commuting to and from work, political demonstrations, etc.

2.2.4 DTSim
The Dynamic Terrain Simulation (DTSim) models changes to the terrain component of the
environment. The changes result from various types of simulation events, including weapon
detonations, movement, weather effects, and military engineering operations, such as the
creation and destruction of obstacles. DTSim receives interaction events from JSAF, and
determines what effect, if any, they have on the geometry or attributes of the terrain at the
location event. For example, when DTSim receives a weapon detonation interaction from JSAF,
it may, depending on the type of the weapon and its proximity to the terrain surface, or a specific
terrain feature, determine that a crater should be created, or that a building should be damaged.
DTSim updates its internal terrain representation, and publishes messages over HLA describing
how the terrain has changed. These messages are used by JSAF to update its terrain
representation, which in turn affects how some activities are carried out. For example, the
appearance of a new crater may change the movement of vehicles to avoid it. Weather effects,
such as prolonged rain, may also change the characteristics of the terrain, restricting the speed of
cross-country movement.

2.2.5 ModStealth
ModStealth is a 3D “stealth” viewer that is part of the JSAF software distribution. It provides
three-dimensional perspective views of the scenario entities and environment that are
dynamically updated as entities move and events occur. Figure 5 shows an example perspective
view of part of the Baghdad urban database. The viewpoint can either be attached to a specified
scenario entity, or can be manually manipulated. The ModStealth control panel, which is used to
manipulate the viewpoint, including attaching the viewpoint to a specific entity, is shown in
Figure 6.

The use of ModStealth to capture screenshots of scenarios exposed several performance issues.
In particular, ModStealth requires a specialized database format that is different from the CTDB
format used by JSAF. The extremely large and detailed Baghdad database significantly stressed
ModStealth’s memory management capabilities.

15

Figure 5: ModStealh Perspective View

Figure 6: ModStealth Control Panel

16

2.2.6 MARCI
MARCI (Multi-host Automation Remote Control and Instrumentation) is a simulation exercise
control and management tool that is part of the JSAF software distribution. MARCI allows an
operator to control, monitor, and analyze an entire federation, possibly distributed across
multiple sites, from a single workstation. MARCI can be used to distribute federates to multiple
systems prior to a simulation run. MARCI’s Mass Launch capability provides the ability to start
multiple systems nearly instantaneously. MARCI can also display disk space and memory
utilization on these systems. Operators have the ability to launch individual workstations by
choosing from a list of common options in a graphical user interface (GUI). Individual federates
can be started and shut down. MARCI can execute federation-wide Global Pause and Global
Resume operations through the RTI. It can execute federation-wide scenario load and save
operations.

2.2.7 HLA-to-DIS Gateway
The HLA-to-DIS Gateway is part of the JSAF software distribution. It is an HLA federate that
translates a subset of the MC02 FOM messages, the subset that matches the Realtime Platform
Reference (RPR) FOM, to and from corresponding DIS Protocol Data Units (PDUs). This
allows DIS applications to participate in HLA federations.

2.2.8 SIMPLE
SIMPLE (Simulation to C4I Interchange Module for Plans Logistics and Exercises) is an
interface between the simulated battlefield environment and real world command and control
systems. SIMPLE provides a database that maps simulation units, platforms, munitions, and
supplies to real world units, platforms, munitions and supplies.

SIMPLE also contains a messaging module that correctly generates the tactical messages
required by the military C4I systems to report on these units, platforms, etc.

The heart of SIMPLE is the scenario database. This database is uniquely tailored to each
simulation scenario in order to provide the correct mappings from "sim" to reality. SIMPLE is a
product in the Digital Battlestaff Sustainment Training (DBST) federation environment
developed primarily by the National Simulation Center (NSC) located at Ft. Leavenworth, KS.

SIMPLE was used to generate air track messages in Link-16 format, for input to the TBMCS
Track Management Data Base (TMDB).

2.2.9 HLA-to-XML Gateway
The HLA-to-XML Gateway is an HLA federate that translates FOM entity and interaction
messages into an easily parsable XML stream that can be accessed by multiple applications. The
purpose of the HLA-to-XML Gateway is to make it easier for a variety of applications to access
the data generated by an HLA federation, by encapsulating the details of connecting to an HLA
federation and receiving data. The HLA-to-XML Gateway is primarily used to support the
Integrated Situation Viewer.

17

2.2.10 Integrated Situation Viewer
The Integrated Situation Viewer, commonly referred to simply as “the Viewer”, is intended to
support experimentation with theater-level air mission situation awareness and dynamic
retasking. The Viewer displays simulation state information describing air missions, which is, in
effect, ground truth, and the corresponding Air Battle Plan information. In addition, any
information (derived from the simulation) that reflects the reported or perceived current
situation, as output by various sensor models, is displayed.

The Viewer consists of a number of loosely coupled components. The back-end portion of the
Viewer consists of a collection of components that are capable of reading data from various
sources. Simulation entity state and event data output by JSAF, OASES, DTSim, and other
simulations is read via an HLA-to-XML gateway. This gateway converts entity state information
received over HLA into a stream of XML messages. It also performs coordinate conversion
(from geocentric coordinates to geodetic coordinates), and partial translation of the DIS Entity
Bit Vector (EBV) fields that are used to hierarchically identify entities by nationality, domain,
type, subtype, etc. Other data sources, including JSAF input spreadsheets, are read directly from
the appropriate files.

The “heart” of the Viewer consists of an integrated domain model that stores and maintains
information on air mission plans, individual aircraft, and their targets. The data read from the
various back-end sources is used to populate and update this model.

The front-end of the Viewer consists of multiple views of the information that the domain model
contains. Several types of views are supported, including:

• Map views – displaying the locations of aircraft and targets, planned and actual flight
paths, etc., overlaid on a map background at multiple scales and resolutions using the
JView visualization toolkit developed by AFRL/RISB,

• Tabluar views – listing entities of various types (aircraft, targets, missions, etc.) and their
relevant characteristics, and capable of being sorted and ordered in various ways,

• Text views – displaying a streaming list of text messages, generated by the Simulation
Network News (SNN) utility, which is part of the JSAF distribution.

The Viewer also includes an interactive retasking capability. When this capability is invoked, it
sends messages to JSAF to alter the current tasking of a specified aircraft, normally designating a
new target for that aircraft.

The main Viewer GUI, shown in Figure 7, consists of a default Map View and a row of buttons
at the bottom of the window to start other views. With the exception of the SNN View, multiple
instances of all of the views can be launched. The Map View contains entities, routes and
background map data. It is also where the lens appears.

18

Figure 7: Map View GUI, Including Lens

The lens feature allows the user to left click anywhere in the main GUI, causing both a lens and a
separate magnified Map View to appear. The lens can be moved by clicking and holding the
mouse button within the title bar region of the lens window. Clicking in another location on the
map will cause the lens to snap to that location. The movement of the lens is reflected by the map
information in the Magnified Map View.

The Magnified Map View, shown in Figure 8, shows the same data as the Map View but with
both the CADRG and DTED map background at a higher resolution. The center divider can be
moved to adjust the amount of space both map types take up on the screen. Any entity icon
selections made in the Magnified Map View will result in the selected item being highlighted in
the Table View if it is visible there. Route selections made in the Magnified Map View will
result in the Route Name being output to the command window.

The Table View is launched via the New Table View button at the bottom of the main GUI
window. This view contains data related to the entities shown on the map. The columns can be
moved around and the rows can be sorted by clicking on the column header. Complex sorts are
enabled by holding the control key down when clicking subsequent column headers. A row
selected in the table causes the related entity icon to be highlighted on the Map View.

19

Figure 8: Magnified Map View

The Controller is the “brain” of the Viewer, coordinating all of the other components. When new
information arrives from one of the sources, the Controller triggers the updating of the domain
model, and then the updating of all views that are affected by the change. Similarly, when the
interactively changes a piece of information in one of the views, the Controller triggers the
updating of the domain model, and then the updating of any other views that are affected by the
change. The Controller also coordinates the selection of entities and locations across all of the
views, so that an entity that is selected in one of the views is also highlighted in all other views in
which it appears. A Controller GUI allows the user to select which types of views should be
displayed and what the content of each should include.

2.2.11 TBMCS-to-JSAF
The simulation preparation component of the JSB-RD environment, TBMCS-to-JSAF, allows
existing Air Battle Plans (ABPs) contained within the Air Operations Data Base (AODB) of the
Theater Battle Management Core System (TBMCS) to be converted into sets of JSAF input
spreadsheets that can be executed using JSAF. This application extracts a specified ABP from
the AODB, which contains specifications of multiple air missions of various types. Each mission
specification includes the numbers and types of aircraft involved in the mission, their takeoff and
return times and bases, and a sequence of key mission events. These mission events include
takeoff, refueling (start and end), time on target (start and end), and landing. Ground attack
missions also identify their respective targets. Supporting information describing the mission
targets is extracted from the MIDB.

20

The basic mission information, along with a list of the air defense threats in the area, can be fed
to a separate Route Planner application (see below), which determines the “best” route for each
mission to and from its assigned target while avoiding air defense threats. The returned route
contains a number of intermediate waypoints that the aircraft should pass through on the way to
and from their target.

This information is then used to generate a JSAF input spreadsheet. The spreadsheet contains
two entries for each scheduled air mission, one describing the ingressing leg of the mission, and
the other describing the return leg. Each entry specifies, in JSAF terms, the number and type of
aircraft, the call sign(s) of the aircraft, the type of task to be performed, the take off and return
times, and the base and target locations. A second spreadsheet contains the intermediate route
points, which are linked to the missions by name.

2.2.12 Route Planner
The Route Planner application takes a “stick route” for a planned air mission, consisting only of
the source airbase coordinates, the target coordinates, and the return airbase coordinates, as well
as a collection of adversary air defense threats (i.e., SAM and AAA sites). It returns a more
complex route, containing additional waypoints, that attempts to reach the target and return while
avoiding the listed threats.

The Route Planner is used by TBMCS-to-JSAF to attempt to emulate the more detailed mission
planning activities that occur at the unit level. It passes the Route Planner the basic mission
information obtained from an Air Battle Plan, and the air defense threats obtained from the
MIDB. It takes the resulting route, with the added waypoints, and constructs a spreadsheet that
can be read by JSAF.

2.2.13 GIESim
The Global Information Enterprise Simulation (GIESim) provides high fidelity Link-16 network
modeling with full resolution of propagation effects, including power and distance based Signal
to Noise ratio, terrain masking and other Line Of Sight (LOS) issues. The vision of GIESim is to
move, process, manage, and protect the C4ISR information that supports the functions of Global
Awareness and Dynamic Planning and Execution. The mission of GIE is to link aerospace assets
in-theater and globally, to integrate C3 & ISR networks, to defend critical information systems
from cyber attack, and to develop new information processing and management techniques. Most
large-scale force level simulations assume perfect communications. The lack of communications
in a simulation environment can lead to the prediction of erroneous results.

Within the GIESim framework, users are able to execute, via a common interface, multiple
communications and network M&S tools to effectively and efficiently analyze candidate
communications architectures and technologies. GIESim can interface with other M&S tools
(e.g., force-level simulations and detailed hardware system models) to provide the appropriate
level of M&S fidelity and processing speed for the broad spectrum of M&S tasks.

Within the JSB-RD distributed simulation environment, the role of GIESim is to evaluate
communications connectivity between various entities in the simulation. Communication
networks are defined within GIESim, tying together various collections of simulated entities.

21

JSAF controls the movements of the simulated entities. GIESim monitors customized entity state
messages published by JSAF and updates the locations and headings of the entities. When two
entities need to communicate with each other, JSAF sends a request to GIESim identifying the
two entities, the type of communication, and the length of the message. GIESim then determines
whether or not the specified entities can communicate, either directly or via available relays. If
they can communicate, GIESim returns a response to JSAF indicating the delay before the
message will arrive at its destination. JSAF then schedules the delivery of the message at the
indicated time.

2.2.14 Logging and Analysis
Under this effort, additional logging and analysis tools were added to the JSB-RD distributed
simulation environment. These tools included:

 JLogger – an open source, general-purpose data logging tool,

 CDLA – logger, playback, debug, network traffic tool

 FAARS – after-action review tool

JLogger is a general-purpose data logging tool for Java developers. It is used in conjunction
with JSAF to log all HLA object and interaction messages that are output during a simulation
run. The logged messages are captured and stored in a relational database management system.

CDLA (CWIN Data Logging and Analysis) is a tool developed within Northrop Grumman’s
Cyber Warfare Integration Network (CWIN) to provide a data logging, playback, debugging, and
network traffic analysis tool. It was obtained and added to the JSB-RD distributed simulation
environment under this effort.

FAARS (Future After Action Review System) is an analysis tool that can be used to analyze the
results of HLA simulations. It was developed by the Army, and is particularly well-suited for
analyzing ground combat scenarios.

2.3 Example Scenario
This section describes one of the scenarios developed and executed using the JSB-RD during this
effort. The scenario uses the unclassified Pacifica MIDB database, in which the state of
California is redefined to be the adversary nation of Califon. The scenario consists of two parts.
First, there is a theater-level air superiority scenario, with US air forces having the operational-
level objective of disabling the Califon Integrated Air Defense System (IADS). In addition,
there is a small-scale scenario involving a small group of insurgents attacking a US convoy using
a truck bomb. The scenario also incorporates elements of the Empire Challenge 2008 airborne
networking experiments.

22

2.3.1 Scenario Development
The scenario includes a total of 263 separate entities. The adversary forces include:

• SAM sites of several different types (SA-10, SA-5, SA-3, and SA-2), with the associated
Regiment & Brigade HQs, all with their full complements of radars and communications,

• MiG 29s, with their search radars.

The friendly forces include:

• Strike aircraft, including B52s, F117s, F15Es, F16Cs, F18EFs – attacking the Califon
IADS,

• C4ISR aircraft, including AWACS, E6B, E2C, Global Hawk, Predator, C9, Boeing 767s,

• Ground facilities, including a Joint Air Operations Center (AOC), a Cyber AOC, a Space
AOC, a Wing Operations Center (WOC), an Air Support Operations Center (ASOC),
and a Combat Reporting Center (CRC),

• A collection of Unattended Ground Sensors (UGS),

• A US Army truck convoy,

• A US Special Operations Forces (SOF) squad, with an associated Joint Tactical Air
Controller (JTAC).

In addition, the scenario includes some civilian ground vehicle traffic, a group of five insurgents,
and a truck which they have loaded with explosives.

23

Figure 9: Master Entity List

Figure 9 shows a portion of the Master Entity List for this scenario. One of the challenges of
integrating multiple simulations, including JSAF and GIESim, with real command and control
systems such as TBMCS, is that these systems all have different ways of identifying entities and
entity types. The Master Entity List serves as a “Rosetta Stone”, allowing entity identifier and
type information to be translated from one system to another. As shown in the figure, it includes
MIDB entity names TBMCS mission numbers, callsigns, JSAF entity types and identifiers,
GIESim entity identifiers, FOM entity identifiers, and HLA entity classes and identifiers.

Figure 10 shows the coverage of the various SAM systems that make up the Califon IADS, as
defined in the unclassified Pacifica MIDB. The SA-10s and SA-5s are the longer-range area
defense systems, while the SA-2s and SA-3s are the shorter-range point defense systems. The
theater-level air superiority scenario consists of a sequence of attacks that has the objective of
creating a gap in the Califon IADS in the Palmdale area, where the lower-level scenario takes
place.

The Theater Battle Management Core System (TBMCS) was used to create a Target Nomination
List (TNL) for this scenario. A portion of this TNL is shown in Figure 11.

The attack begins wth two B-52s each launching multiple Conventional Air Launched Cruise
Missiles (CALCMs) to knock out the Margarita Peak and Santiago Peak SA-5 sites. With these
long range SAMs disabled, a series of subsequent attacks against the SA-2 and SA-3 sites at
Barstow, China Lake, Edwards, and Palmdale are carried out by four pairs of F-15Es and one
pair of F-117s.

ID Function Mission # Callsign HLA Class HLA Entity ID FOM Entity ID GIESIM ID JSAFType JSAF ID
175 ALAMITOS SA-10 C2 BNKR B0072_01_98 66 435 1043 Bunker JS/80842635/14e7/1446
176 ALAMITOS SA-10 C3 VEH B0072_01_04 67 420 1003 SA-10 Command Vehicle JS/80842635/14e7/1440
177 ALAMITOS SA-10 CLAM SHELL RDR B0072_01_07 66 441 1050 Clam Shell Radar JS/80842635/14e7/1448
178 ALAMITOS SA-10 FLAP LID RDR B0072_01_02 67 432 1027 SA-10 FCR JS/80842635/14e7/1444
179 ALAMITOS SA-10 LNCHR01 B0072_01_00 66 424 1015 SA-10 TEL JS/80842635/14e7/1442
180 ALAMITOS SA-10 LNCHR02 B0072_01_01 66 426 1021 SA-10 TEL JS/80842635/14e7/1443
195 AWACS Airspace Control CHALICE 64 535 1432 301 E-3B AWACS JS/80842635/6953/575
196 BILLED0 2101 BILLED01 64 2 16 101 B-52H Stratofortress JS/80842635/14ff/2
197 BILLED0 2104 BILLED04 64 4 20 102 B-52H Stratofortress JS/80842635/14ff/6
198 FLAXON0 2105 FLAXON05 64 6 24 121 F-117 Flt-of-2 JS/80842635/6242/8009
199 FLAXON0 2105 FLAXON06 64 14 48 122 F-117 Flt-of-2 JS/80842635/6242/8010
200 SLAMMER0 2107 SLAMMER07 64 9 31 141 F15E Flt-of-2 JS/80842635/645b/7608
201 SLAMMER0 2107 SLAMMER08 64 12 39 142 F15E Flt-of-2 JS/80842635/645b/7609
202 SLAMMER1 2111 SLAMMER11 64 20 64 151 F15E Flt-of-2 JS/80842635/645b/9613
203 SLAMMER1 2111 SLAMMER12 64 17 56 152 F15E Flt-of-2 JS/80842635/645b/9614
208 SEAD/EW 2552 LEOPARD52 64 533 1421 200 EA-6B Prowler JS/80842635/645b/34182
209 MAGPIE0 2201 MAGPIE01 64 527 1412 131 F16C Flt-of-2 JS/80842635/645b/34010
210 MAGPIE0 2201 MAGPIE02 64 524 1404 132 F16C Flt-of-2 JS/80842635/645b/34011
211 BOVINE2 5021 BOVINE21 64 515 1377 111 FA18EF Flt-of-2 JS/80842635/645b/32927
212 BOVINE2 5021 BOVINE22 64 518 1385 112 FA18EF Flt-of-2 JS/80842635/645b/32928
213 EC ISR 3431 BUZZY31 64 505 1334 401 Predator UAV JS/80842635/645b/33752
214 EC ISR 3432 KODAK32 64 521 1398 402 Global Hawk JS/80842635/645b/34003
218 EC Air Nodes 3461 TEA61 64 509 1353 303 E-3B AWACS JS/80842635/645b/33728
219 EC Air Nodes 5023 SEAFARER23 64 507 1342 302 E-2C Hawkeye JS/80842635/645b/33740
220 Unmanned Ground Sensors UG01 61 549 1498 721 Sniper JS/80842635/1b8c/252
221 Unmanned Ground Sensors UG02 61 548 1491 722 Sniper JS/80842635/1b8c/259
228 US_Convoy US_Truck1 66 561 1518 741 Civ Medium Truck PLT JS/80842635/1910/29
229 US_Convoy US_Truck2 66 563 1521 742 Civ Medium Truck PLT JS/80842635/1910/30
232 SOF_SQUAD (JTAC) WHITE_LIGHT 61 565 1531 762 Rifle Squad JS/80842635/1bf0/85
233 SOF_SQUAD SOF_1L 61 566 1538 763 Rifle Squad JS/80842635/1bf0/89
234 SOF_SQUAD SOF_1R 61 573 1568 764 Rifle Squad JS/80842635/1bf0/90
235 SOF_SQUAD SOF_1G 61 572 1565 765 Rifle Squad JS/80842635/1bf0/91
236 SOF_SQUAD SOF_1A 61 571 1562 766 Rifle Squad JS/80842635/1bf0/92
245 Civilian Distractors veh_301 66 578 1590 2301 Civ Pickup JS/80842635/6953/600
246 Civilian Distractors veh_307 66 579 1593 2307 Civ Pickup JS/80842635/6953/601
252 Enemy VIED Truck_Bomb 66 555 1511 5002 Civilian Truck Bomb JS/80842635/1910/49
253 Insurgents Insurgent01 61 550 1505 5003 Fedayeen Team JS/80842635/1910/113
254 Insurgents Insurgent02 61 551 1506 5004 Fedayeen Team JS/80842635/1910/114
258 Simulated Building BUILDING 66 564 1525 5000 BTR-80 JS/80842635/1910/152

24

Figure 10: Califon Air Defense Coverage Areas

The other air missions in the scenario include pairs of F-16CJs and F18-Es on CAP, along with a
single EA-6B Prowler. Empire Challenge 2008 aircraft include several experimental airborne
networking platforms, including an E-10 prototype, Paul Revere, and the BACN prototype.
Surveillance aircraft include an E3-C AWACS, an E2-C Hawkeye, an MQ-1 Predator, and an
RQ-4 Global Hawk.

2.3.2 Scenario Execution
Figure 13 shows the function configuration for the execution of this scenario. JSAF generated
the movements, communications and sensor emissions, and combat events, and output them
using the HLA protocol. These messages are logged using JLogger in conjunction with JSAF.
These messages are passed to the Viewer via the HLA-to-XML gateway, where they are
displayed dynamically. The HLA messages also pass through the DIS-HLA Gateway, where
they are translated from the HLA protocol to the DIS protocol. This allows them to be read by
the SIMPLE application, which translates the aircraft movements into a Link-16 message track
format. These are fed through MTDS to TBMCS, where they are used to update the track
database, and are displayed on the COP.

25

Figure 11: Target Nomination List

Figure 12: Mission List

1. MARGARITA PEAK SA-5 SITE 0992MB0002 - DD001

Desired Effects:
Rationale:
Collateral Concerns:

1 SA5 LNCHR Unknown 332638.00N 1172256.00W Unknown Unknown

2 SA5 LNCHR Unknown 332638.00N 1172310.00W Unknown Unknown

3 SA5 LNCHR Unknown 332638.00N 1172322.00W Unknown Unknown

4 SA5 LNCHR Unknown 332638.00N 1172336.00W Unknown Unknown

5 SA5 LNCHR Unknown 332638.00N 1172348.00W Unknown Unknown

6 SA5 LNCHR Unknown 332638.00N 1172402.00W Unknown Unknown

7 SA5 LNCHR Unknown 332634.00N 1172300.00W Unknown Unknown

8 SA5 LNCHR Unknown 332634.00N 1172310.00W Unknown Unknown

9 SA5 LNCHR Unknown 332634.00N 1172326.00W Unknown Unknown

10 SA5 LNCHR Unknown 332634.00N 1172332.00W Unknown Unknown

11 SA5 LNCHR Unknown 332634.00N 1172352.00W Unknown Unknown

12 SA5 LNCHR Unknown 332634.00N 1172358.00W Unknown Unknown

13 TALL KING RDR Unknown 332616.56N 1172328.56W Unknown Unknown

14 PERFECT PATCH VAN Unknown 332614.56N 1172332.56W Unknown Unknown

15 SQUARE PAIR RDR Unknown 332614.56N 1172336.56W Unknown Unknown

16 SQUARE PAIR RDR Unknown 332612.56N 1172324.56W Unknown Unknown

17 SPT BLDG Unknown 332612.00N 1172328.00W Unknown Unknown

18 GUIDANCE TRACKING BLDG Unknown 332612.00N 1172330.00W Unknown Unknown

19 GENERATOR Unknown 332612.00N 1172332.00W Unknown Unknown

20 BACK NET RDR Unknown 332610.00N 1172334.00W Unknown Unknown

21 ODD PAIR RDR Unknown 332610.00N 1172336.00W Unknown Unknown

Title: SIMULATION EXERCISE 08-1 (SE 08-1) Scenario Overview

MSN
Type MSN Support Unit NOTYPAC C/S ICAO SCL Air Location Vul/Tgt Time(s) TGT ALT

AR
Track ARCT

Off
load

Control
Agency TACP

Internal OCA 2104 22BS 1XB52H BILLED04 KIND 15A86 LAR CAP-N 1400Z/1405Z
Margarita
Peak SA-5

72 ACF CRC-
4

OCA 2101 22BS 1XB52H BILLED01 KIND 15A86 LAR CAP-L 1400Z/1405Z
Santiago Peak
SA-5 CRC-4

OCA 2105 35FS 2XF117 FLAXON05 KDPG 2XG10 1435Z/1440Z
Barstow SA-
2 CHALICE

OCA 2107 SEAD/EW 362FS 2XF15E SLAMMER07 KLSV 2G31X2G10 1415Z1420Z

China Lake
Inyokern SE
Sa-2 CHALICE

OCA 2111 SEAD/EW 362FS 2XF15E SLAMMER11 KLSV 2G31X2G10 1440Z1445Z
Edwards NE
SA-2 CHALICE

OCA 2113 SEAD/EW 362FS 2XF15E SLAMMER13 KLSV 2G31X2G10 1415Z1420Z
China Lake
NWC SA-3 CHALICE

OCA 2115 SEAD/EW 362FS 2XF15E SLAMMER15 KLSV 2G31X2G10 1440Z1445Z
Palmdale SA-
3 CHALICE

SEAD 2201 77FS 2XF16CJ MAGPIE01 KLSC 22A88X2W2 CAP-J 1410Z/1515Z CHALICE

EW 2552 VMAQ2 1XEA6B LEOPARD52 KDMA E3Q99X1A88X1 CAP-E 1410Z/1515Z CHALICE

EC08 XCAS 5021 VMF333 2XF18E BOVINE21 KDPG FG31X2IDX2W2 CP SE08 1420Z-1530Z 280 CHALICE
White
Lightning

OTR 3411 E-10 767RS 1XB767 PYTHON11 KDMA BEST EC08 YELLOW 1420Z-1530Z 300 CHALICE
OTR 3412 Paul Revere 768RS 1XB767 FISHLIPS12 KDMA BEST EC08 GREEN 1420Z-1530Z 320 CHALICE
OTR 3403 BACN 769RS 1XC9 ELVIS03 KDMA BEST EC08 BLUE 1420Z-1530Z 200 CHALICE
XAEW 3461 AWACS 964ACS 1XE3C TEA61 KLSC BEST EC08 YELLOW 1420Z-1530Z 320 CHALICE
XAEW 5023 Hawkeye VAW126 1XE2C SEAFARER23 CV70 BEST EC08 GREEN 1420Z-1530Z 240 CHALICE
RECCE 3431 Pred 770RS 1XMQ1 BUZZY31 KLSV 2XAGM114 EC08 GREEN 1420Z-1530Z 200 CHALICE
RECCE 3432 Global Hawk 771RS 1XRQ4 KODAK32 KLSV BEST EC08 YELLOW 1420Z-1530Z 200 CHALICE

26

Figure 13: Functional Configuration

Figures 14 through 18 illustrate selected aspects of the scenario execution. Figure 14 shows the
entire Califon IADS modeled as JSAF entities. Figure 15 shows the locations of all entities at
the start of the scenario. The two horizontal lines of symbols in the lower right part of the screen
represent the two B-52s and the sequence of CALCMs that each launches. The Califon IADS
elements are shown in red in the lower-left part of the screen. Blue strike aircraft, ISR aircraft,
airborne networking aircraft, and UAVs are shown in blue in the upper left and center areas of
the screen. Figure 16 shows a more detailed view of the two B-52s launching their cruise
missiles. The two horizontal lines of black symbols represent the planned release points for each
of the eight missiles launched by each B-52. The B-52s themselves are shown in blue. The
cruise missiles in flight are shown as short horizontal lines spread out to the west of the launch
points.

Figure 17 shows a more detailed view of the Santiago Peak SA-5 site, showing the distribution
of the TELs, radars, and command and control vehicles at the site. Elements of other SAM sites
can be seen to the northeast and northwest.

27

Figure 14: Califon IADS Modeled in JSAF

Figure 15: Initial Entity Locations

28

Figure 16: Cruise Missiles in Flight

Figure 17: Santiago Peak SA-5 Site

29

Figure 18: Ground Scenario Locations

Figure 18 shows the area where the ground scenario takes place. A US truck convoy moves up
the route shown from south to north. Civilian traffic moves randomly along these roads as well.
The insurgent truck bomb vehicle moves down the road from north to south. As it moves, the
truck bomb is detected moving toward the convoy by a series of UGS spaced along the road.
These reports are communicated to the Joint AOC, which tasks the nearby Predator to monitor
the suspicious-looking truck. The truck stops as it nears the approaching convoy and the
insurgents dismount and hide nearby. The Predator operator sees the stopped truck. However,
before the convoy can be warned, the insurgents detonate the truck bomb as the convoy passes,
destroying one of the convoy trucks. The insurgents retreat toward a nearby building. However,
before they can reach the building, they are spotted by a nearby SOF squad. The JTAC who is
attached to the SAF squad calls in an air strike against the building. Two nearby F-18Es are
dispatched to carry out the attack. They coordinate their attack with the JTAC to minimize the
possibility of civilian casualities. A few minutes later, the F-18Es strike the building, killing the
insurgents. The Predator provides follow-up BDA.

2.3.3 Scenario Analysis
The logged HLA entity state and interaction messages were analyzed to identify and extract the
key scenario events that resulting in the failure to identify the threat and warn the convoy before
the truck bomb could be detonated.

30

The HLA entity state and interaction messages were exported from JLogger as comma-
separated-value (CSV) files by message type, and were then imported into a Microsoft Access
database. They were then processed to make the linkages between the various message types
clear. The sequence of processing steps performed on the logged HLA message traffic was as
follows:

1) Extracted lists of distinct entities of each class – aircraft, ground vehicles, humans,
munitions, etc.

2) Created a master entity list to allow identifiers and type information to be translated
among:

– TBMCS mission ids & callsigns

– MIDB BE numbers, OSuffixes, and DMPI identifiers

– HLA entity identifiers and classes

– JSAF entity identifiers, types, and markings

– GIESim entity identifiers

3) Added callsigns to all logged HLA entity state and interaction records for readability

– Aircraft, Ground Vehicles, Humans, etc.

– Blip (detection/track) entities – sensing and detected entities

– Weapon Fire, Munition Detonation, & Damage Assessment interactions – firing,
target, and munition entities

– GIESim Send, Receive, and Entity State interactions – sending and receiving
entities

Key events were then identified and extracted, as follows:

• Movement

– Changes to PhysicalEntity class WorldLocation, and VelocityVector attribute
values; reflecting movement starts and stops

• Communication

– GIESIM_MSG_SEND interactions, including links to the sending and receiving
entities

– GIESIM_MSG_RCVD interactions, including links to the receiving entity

– RadioTransmitter class, identifying radio transmitters and their attributes

31

• Sensors

– Blip class, describing radar and sensor detections

– EmitterSystem class, identifying radars and active sensors and their attributes

– JammerBeam class, identifying jammer emissions and their attributes

– RadarBeam class, identifying individual radar emissions and their attributes

• Combat

– WeaponFire interactions, describing weapon firing events, including links to the
firing entity, optionally to the target entity, and optionally to the munition entity

– MunitionDetonation interactions, describing weapon detonation events, including
links to the firing entity, optionally to the target entity, and optionally to the
munition entity

– DamageAssessment interactions, evaluating the damage inflicted on an entity by a
weapon detonation event, including links to the firing entity, optionally to the
target entity, and optionally to the munition entity

– Changes to PhysicalEntity class DamageState attribute values, indicating that an
entity was damaged or destroyed

A summary of the key scenario events is shown in Figure 19. The individual events are color-
coded by type, as shown at the top of the table. The event types include:

• Movement events – showing when the truck bomb vehicle started moving, stopped
moving, and was destroyed by its detonation

• Detection events – showing when the various UGS and civilian vehicles first saw the
truck bomb vehicle, and when they last saw the truck bomb vehicle

• Damage assessment events – showing when the truck bomb and the convoy truck were
destroyed, as well as how another truck in the convoy escaped damage, even though it
was within the potential damage radius of the bomb

32

Figure 19: Key Scenario Events

Timestamp Event Type Moving Entity Damage State PowerPlantOn
Timestamp Event Type Seeing Entity Sensor Seen Entity
Timestamp Event Type Seeing Entity Sensor Seen Entity
Timestamp Event Type Seeing Entity Sensor Seen Entity
Timestamp Event Type Firing Entity Munition Type Target Entity Computed Result

1212168972.561214 Initial Truck_Bomb NoDamage Yes
1212172317.569577 Start Moving Truck_Bomb NoDamage Yes
1212172458.541548 First Seen UG02 SPOT_SAR Truck_Bomb
1212172550.443013 First Seen UG03 SPOT_SAR Truck_Bomb
1212172817.025066 First Seen UG04 SPOT_SAR Truck_Bomb
1212172995.955829 First Seen veh_301 SPOT_SAR Truck_Bomb
1212173001.473677 First Seen veh_310 SPOT_SAR Truck_Bomb
1212173002.565603 First Seen UG06 SPOT_SAR Truck_Bomb
1212173016.594798 First Seen veh_317 SPOT_SAR Truck_Bomb
1212173033.893772 First Seen veh_307 SPOT_SAR Truck_Bomb
1212173035.817063 First Seen veh_308 SPOT_SAR Truck_Bomb
1212173071.243725 Stop Moving Truck_Bomb NoDamage No
1212173090.686806 Last Seen UG02 SPOT_SAR Truck_Bomb
1212173118.535735 Last Seen UG03 SPOT_SAR Truck_Bomb
1212173275.069619 Last Seen UG04 SPOT_SAR Truck_Bomb
1212173280.530691 Last Seen veh_310 SPOT_SAR Truck_Bomb
1212173301.252892 Last Seen veh_307 SPOT_SAR Truck_Bomb
1212173305.830832 Last Seen veh_317 SPOT_SAR Truck_Bomb
1212173332.312785 Last Seen veh_301 SPOT_SAR Truck_Bomb
1212173348.547111 Last Seen veh_308 SPOT_SAR Truck_Bomb
1212174020.123048 Damage Assessment munition_US_Mk82 Truck_Bomb Catastrophic
1212174020.123693 Damage Assessment US_Truck4 NoDamage
1212174020.132715 Damage Assessment US_Truck1 Catastrophic
1212174020.446691 Destroyed Truck_Bomb Destroyed Yes
1212174295.101663 Last Seen UG06 SPOT_SAR Truck_Bomb

33

3 JVIEW COORDINATE, ORIENTATION, AND VECTOR CONVERSION SERVICES
This task was focused on the development of an enhanced coordinate conversion capability for
AFRL’s JView 3D visualization package, based on the integration of National Geospatial-
Intelligence Agency’s (NGA’s) GEOTRANS coordinate conversion software and the Synthetic
Environment Data Representation and Interchange Specification (SEDRIS) Spatial Reference
Model (SRM) software. This capability provides conversion between geodetic, geocentric, local
Cartesian, Mercator, Transverse Mercator, Polar Stereographic, Lambert Conformal Conic,
Universal Transverse Mercator (UTM), Universal Polar Stereographic (UPS), and Military Grid
Reference System (MGRS) coordinates. It also provides datum transformation between WGS84
and all of the other local and global datums currently supported by NGA. It provides conversion
between WGS84 ellipsoid heights and EGM96 geoid (gravity-based) heights. In addition to
converting position coordinates, it incorporates the orientation and vector conversion capabilities
recently added to the SEDRIS SRM to support the Test and Training Enabling Architecture
(TENA) program. This allows the software to be used by various simulation applications to
convert entity state information, including position, velocity, and acceleration, between different
spatial reference frames. Additional requirements include high-performance (~10K to 100K
points per second), sub-meter accuracy, and thread safety.

3.1 Background
The GEOTRANS software is the standard coordinate conversion and datum transformation
software used throughout DoD, as well as by a worldwide user community. GEOTRANS was
originally developed by the US Army Topographic Engineering Center (TEC) in 1997, using the
C programming language, and in accordance with the software reuse guidelines published by the
Army Reuse Center. In 1999, it was adopted by the NGA, and expanded to meet the
requirements of the Joint Mapping Tool Kit (JMTK) program. In 2001, it was first made
publicly available by NGA. The GEOTRANS software continues to be included within NGA’s
Commercial Joint Mapping Tool Kit (C/JMTK).

In 2006, maintenance of the GEOTRANS software was made part of NGA’s Mensuration
Services Program (MSP), where it was adapted to serve as the MSP Coordinate Conversion
Service. Northrop Grumman Information Systems continued to maintain the GEOTRANS
software under this NGA program. The current publicly available version is GEOTRANS
v2.4.2. It is available from NGA’s web site at: http://earth-info.nga.mil/GandG/geotrans/.

The GEOTRANS software consists of an interactive application, supported by an underlying
software library. Figure 20 shows the GEOTRANS application GUI, which allows coordinates
to be converted between any two supported combinations of coordinate reference systems and
datums. In conjunction with geodetic coordinates, height values can be converted between
WGS84 ellipsoid height, and several variations of geoid height, based on the EGM96 and
EGM84 gravity models.

http://earth-info.nga.mil/GandG/geotrans/

34

Figure 21 shows the underlying structure of the GEOTRANS software. The GEOTRANS
application is supported by the GEOTRANS engine, which provides an API that can be used to
convert points from any combination of supported datum and coordinate system to any other
supported combination. It also supports the creation (and deletion) of user-defined ellipsoids and
datums. The GEOTRANS Engine is supported by a collection of thirty-six individual C
modules, one for each type of coordinate system or map projection supported, plus modules that
provide access to ellipsoid, datum, and geoid model data. While these individual modules are
largely independent of one another, there are a few dependencies. For example, the MGRS
module depends on the UTM and UPS modules, which in turn depend on the Transverse
Mercator and Polar Stereographic modules.

Figure 20: GEOTRANS Application GUI

35

Under the MSP program, the original C implementation was replaced by an object-oriented
implementation in C++. The GEOTRANS Engine and the individual C modules have been
converted into corresponding C++ classes. The API of the Coordinate Conversion Service class
is now thread safe. The classes that support individual coordinate system or map projection
types are all derived from a single abstract parent class. Supporting class hierarchies for
coordinate tuples, and for coordinate system parameter sets, have also been defined.

A number of users and programs have requested a Java implementation of GEOTRANS.
However, NGA has not yet funded such an implementation. In late 2007, a partial Java
implementation of GEOTRANS was created to support the Joint Targeting Toolbox (JTT)
program. This is known as the Targeting Database Access Layer (TDAL) Coordinate
Conversion capability. This implementation included a specialized version of the GEOTRANS
engine, which takes as input a point specified using any of the coordinate formats used in the
MIDB, and converts that point to all of the other formats. This implementation explicitly
supports the conversion of points between geodetic, geocentric, UTM, UPS, and MGRS
coordinates. It also implicitly supports Transverse Mercator and Polar Stereographic
coordinates, since they underlie UTM and UPS.

Figure 21: GEOTRANS Software Architecture

The SEDRIS Spatial Reference Model (ISO 18026) also specifies a coordinate conversion
capability. Recently, sponsored by the TENA program, it has been augmented to also support
the conversion of orientation and vector information, allowing entity state information, including
position, orientation, velocity, and acceleration, to be converted between different spatial
reference frames.

class Dependencies

CoordinateConv ersion

DatumLibrary

EllipsoidLibrary

GeoidLibraryCoordinateSystem
AlbersEqualAreaConic

CoordinateSystem
BritishNationalGrid

CoordinateSystem
AzimuthalEquidistant

CoordinateSystem
VanDerGrinten

CoordinateSystem
Geocentric

CoordinateSystem
Bonne

CoordinateSystem
Cassini

CoordinateSystem
CylindricalEqualArea

CoordinateSystem
Eckert4

CoordinateSystem
Eckert6

CoordinateSystem
EquidistantCylindrical

CoordinateSystem
GARS

CoordinateSystem
GEOREF

CoordinateSystem
Gnomonic

CoordinateSystem
LambertConformalConic1

CoordinateSystem
LambertConformalConic2

CoordinateSystem
LocalCartesian

CoordinateSystem
Mercator

CoordinateSystem
MGRS

CoordinateSystem
Miller

CoordinateSystem
Mollw eide

CoordinateSystem
Neys

CoordinateSystem
NZMG

CoordinateSystem
ObliqueMercator

CoordinateSystem
Orthographic

CoordinateSystem
PolarStereographic

CoordinateSystem
Polyconic

CoordinateSystem
Sinusoidal

CoordinateSystem
Stereographic

CoordinateSystem
Transv erseMercator

CoordinateSystem
Transv erseCylindricalEqualArea

CoordinateSystem
UPS

CoordinateSystem
USNG

CoordinateSystem
UTM

36

This task leveraged the GEOTRANS v3.0 implementation, the JTT TDAL coordinate conversion
implementation, and the SEDRIS SRM v4.4 implementation to create a thread-safe, high-
performance, Java coordinate, orientation, and vector conversion software utility for AFRL’s
JView 3D visualization toolkit. The requirements for the JView Coordinate Conversion Service
software were as follows:

1) Provide coordinate conversion between any of the coordinate system types listed in Table
2.

Table 2: Required Coordinate System Types
Coordinate System Type Reference

Geodetic Three Dimensional NGA TR 8350.2

Geocentric Three Dimensional NGA TR 8350.2

Local Cartesian Three Dimensional Note 1

Lambert Conformal Conic (with one or two standard parallels) Map Projection SNYDER

Mercator Map Projection SYNDER

Polar Stereographic Map Projection SNYDER

Transverse Mercator Map Projection SNYDER

Universal Polar Stereographic (UPS) Grid NGA TM 8358.2

Universal Transverse Mercator (UTM) Grid NGA TM 8358.2

Military Grid Reference System (MGRS) Grid NGA TM 8358.1

Note: Local Cartesian is a 3D Cartesian coordinate system with its origin at a point specified in geodetic
coordinates. Normally, the XY plane is tangent to the ellipsoid surface at the origin, while the Z axis is normal to
the ellipsoid surface at the origin.

2) Provide conversion of orientations between any of the three-dimensional coordinate
system types listed in Table 2, supporting the following orientation representations:

a. 3x3 rotation matrix,

b. Axis-angle,

c. Euler angles ZXZ,

d. Tait-Bryan angles, i.e., roll, pitch, and yaw, and

e. Quaternions.

3) Provide conversion of 3D vectors between any of the three-dimensional coordinate
system types listed in Table 2.

4) Provide datum transformations between any of the datums listed in NGA TR8350.2.

37

5) Provide height conversions between:

a. Geodetic Height relative to the surface of the WGS84 ellipsoid,

b. Orthometric Height relative to the Earth Gravity Model 1996 (EGM96) with 15
minute by 15 minute grid spacing and bilinear interpolation.

6) Provide integrated coordinate conversions of points, orientations, and vectors, datum
transformations, and height conversions in any combination as specified above.

7) Target performance shall be a minimum of 10,000 points per second, with a goal of
100,000 points per second.

8) Target accuracy shall be a minimum of 1 meter, with a goal of 1cm. (Note that this refers
to computational accuracy only. Real world location accuracy depends on the accuracy
of the input data, as well as a number of other factors.)

9) The implementation shall be in Java, with a thread safe API. The target platform is
therefore irrelevant, except in that it impacts the achievement of the performance goals
stated above.

3.2 Implementation
In order to implement the requirements listed above, two software components were developed:

1) The JView Coordinate Conversion Service (JView CCS) – this component provides
coordinate conversion, datum transformation, and height conversion between any of the
coordinate reference frame types listed in Table 2.

2) The JView Orientation and Vector Conversion Service (JView OVCS) – this component
provides orientation and vector conversion between any of the coordinate reference frame
types listed in Table 2. It depends on the JView CCS component to define the source and
target coordinate reference frames.

To support the interactive use and testing of these two software components, corresponding
applications were also developed.

3.2.1 JView Coordinate Conversion Service
The design of the JView Coordinate Conversion Service parallels that of NGA’s MSP
Coordinate Conversion Service. The primary difference is that a smaller set of coordinate
system types are supported.

38

The public API of the JView Coordinate Conversion Service is shown in Figure 22. It consists
of the CoordinateConversionService class, and its subordinate DatumLibrary and
EllipsoidLibrary classes, as well as hierarchical sets of CoordinateSystemParameter and
CoordinateTuple classes that are used as parameters. The class CoordinateConversionService
provides the majority of the functionality. Its constructor sets the initial state of the coordinate
conversion service in preparation for coordinate conversion and/or datum transformation
operations, specifying the source datum, source coordinate system type and parameters, if any,
target datum, and target coordinate system type and parameters, if any. Once a CCS object has
been created, it can be used to perform the specified conversion, or its inverse, on any number of
coordinate tuples, either individually or collectively. However, for thread safety reasons, it
cannot be used to perform a different conversion operation. A separate CCS object instance
must be created for each distinct conversion operation to be performed.

Figure 22: JView CCS Public API

The method convertSourceToTarget converts a single specified source coordinate tuple,
referenced to the source coordinate system and datum, into an equivalent target coordinate tuple,
referenced to the target coordinate system and datum. Accuracy information for the source
coordinate tuple can be optionally specified, and, if present, is used to estimate the accuracy of
the output coordinate tuple. The method converTargetToSource performs the inverse operation,
converting from the target coordinate system and datum to the source coordinate system and
datum.

 class JView CCS API

CoordinateConversionService

+ CoordinateConversionService(sourceDatumCode, sourceParameters, targetDatumCode, targetParameters)
+ getDatumLibrary() : DatumLibrary
+ getEllipsoidLibrary() : EllipsoidLibrary
+ getDatum(direction) : int
+ getCoordinateSystem(direction) : CoordinateSystemParameters
+ convertSourceToTarget(sourceCoordinates, sourceAccuracy, targetCoordinates, targetAccuracy) : void
+ convertTargetToSource(targetCoordinates, targetAccuracy, sourceCoordinates, sourceAccuracy) : void
+ convertSourceToTargetCollection(sourceCoordinates, sourceAccuracy, targetCoordinates, targetAccuracy) : void
+ convertTargetToSourceCollection(targetCoordinates, targetAccuracy, sourceCoordinates, sourceAccuracy) : void
+ getServiceVersion() : double

EllipsoidLibrary

+ EllipsoidLibrary(_ellipsoidLibraryImplementation)
+ ellipsoidCode(index) : String
+ ellipsoidCount() : int
+ ellipsoidIndex(code) : int
+ ellipsoidName(index) : String
+ ellipsoidParameters(index) : EllipsoidParameters

DatumLibrary

+ DatumLibrary(_datumLibraryImplementation)
+ datumCode(index) : String
+ datumCount() : int
+ datumEllipsoidCode(index) : String
+ datumStandardErrors(index) : XYZ
+ datumIndex(code) : int
+ datumName(index) : String
+ datumSevenParameters(index) : SevenParameters
+ datumTranslationValues(index) : XYZ
+ datumValidRectangle(index) : AOI

-ellipsoidLibrary-datumLibrary

39

The methods convertSourceToTargetCollection and convertTargetToSourceCollection are
similar, but operate on generic Java collections of coordinate tuples. This allows large numbers
of coordinates to be converted with a single method call.

The methods getDatum and getCoordinateSystem allow the source or target datum, or the source
or target coordinate system type and parameters, respectively, of the CCS object to be retrieved.

The methods getDatumLibrary and getEllipsoidLibrary allow those subordinate objects to be
accessed. They provide methods that allow more detailed information on datum and ellipsoid
parameters to be accessed.

Finally, the method getServiceVersion returns the version number of the CCSobject.

The JView Coordinate Conversion application is called JView GEOTRANS 3.0J, and is a
customized version of the NGA MSP GEOTRANS 3.0 application. Its GUI is shown in Figure
23. Except for the more limited lists of coordinate systems and vertical datums that it provides,
it is identical to the GEOTRANS 3.0 application GUI. The implementation is somewhat
different internally, however, as it accesses the JView CCS implementation, which is written in
Java, while the NGA MSP GEOTRANS 3.0 application uses a Java Native Interface (JNI) layer
to access the MSP CCS implementation, which is written in C++.

40

Figure 23: JView GEOTRANS 3.0J Application GUI

Accuracy testing of the JView Coordinate Conversion Service software was performed using a
subset of the test cases and test procedures developed for NGA’s MSP GEOTRANS v3.0
application and Coordinate Conversion Service. These test cases and test procedures were used
in the successful Final Acceptance Testing of the MSP GEOTRANS v3.0 application and
Coordinate Conversion Service in July 2009. The tests cases are organized as follows:

1) Test procedures for testing the JView GEOTRANS 3.0J application, using the application
GUI,

2) Test procedures using a collection of spreadsheets containing more than 200,000 test
cases supplied by NGA for testing GEOTRANS in 1999; which address all supported
coordinate system types and datums; these test cases are executed using a test application
(“the spreadsheet tester”) which reads the spreadsheets, performs the test cases, and
writes the results back to the spreadsheets for comparison with the expected results,

41

3) Test procedures using a collection of test cases developed by the NGA Coordinate
System Analysis Team (CSAT), known as the “NGA gold data set”, which address a core
subset of coordinate system types that closely corresponds to those listed in Table 2;
these test cases are executed using the file processing functionality of the JView
GEOTRANS 3.0J application, and

4) Test procedures for thread safety; these test cases are executed using a test application
(“the thread-safety tester”) which concurrently performs the same set of coordinate
conversion operations using multiple threads, and compares the results produced by each
thread with a set of expected results.

In August 2009, the subset applicable to the coordinate system types listed in Table 2 was used
to test the JView Coordinate Conversion Service software. The results of these tests were
identical to those of the MSP FAT testing, showing that the accuracy requirement of no more
than 1 meter of computation error was successfully achieved.

Performance testing of the JView Coordinate Conversion Service software was performed using
a test set containing 49,472 geodetic coordinate points distributed world-wide. This collection of
points consists of two subsets:

1) A 10-degree world-wide latitude-longitude grid, and

2) A collection of national political borders and coastlines derived from NGA’s 1:1,000,000
scale Digital Chart of the World (DCW) dataset.

This data set was converted to each of the coordinate system types listed in Table 2, using the
file processing functionality of the JView GEOTRANS 3.0J application. Timing was performed
using the Java Joda-Time utility (available at http://joda-time.sourceforge.net/). The elapsed
time required to process the entire dataset was converted into a points per second (PPS) value.
These are shown in Table 3.

For those coordinate system types, particularly map projections, that are not world-wide in
extent, errors were generated for those points located outside the valid extent of the coordinate
system. For example, for UTM, all of the test points located in the Polar Regions caused errors.
Conversely, for UPS, all of the points located outside the Polar Regions caused errors. The error
handling associated with these points had a significant negative impact on performance for these
coordinate system types. However, this could easily be addressed by tailoring the dataset for
each coordinate system type to include only valid points.

http://joda-time.sourceforge.net/

42

Table 3: Coordinate Conversion Performance

Coordinate System Points Per Second Number of Errors

Geodetic 197,888.00 0

Geocentric 166,572.39 0

Local Cartesian 150,829.27 0

Lambert Conformal Conic (with one or two standard parallels) 158,564.10 398

Mercator 158,564.10 796

Polar Stereographic 90,442.41 14,656

Transverse Mercator 68,902.51 20,2761

Universal Polar Stereographic (UPS) 43,975.11 47,707

Universal Transverse Mercator (UTM) 117,232.23 1314

Military Grid Reference System (MGRS) 67,400.54 0

In spite of the impact of error handling, the performance of the JView Coordinate Conversion
Service software was very impressive, exceeding the goal of 100,000 points per second in most
cases. It was faster than the MSP GEOTRANS 3.0 C++ implementation for all coordinate
system types, in some cases up to five times faster. This appeared to be due to the adaptive
optimization performed within the Java Virtual Machine, which dynamically analyzes the
performance of the code during its execution, and selectively recompiles portions of the code to
improve its performance.

3.2.2 JView Orientation and Vector Conversion Service
The design of the JView Orientation and Vector Conversion Service is loosely based on the
design of the SEDRIS SRM v4.4 orientation and vector conversion functionality. However, the
detailed design has been modified for greater compatibility with the GEOTRANS v3.0 API.

The JView OVCS API is shown in Figure 24. It primarily consists of the
OrientationAndVectorConversionService class, the Orientation and Vector3D classes, and the
five orientation parameter classes.

The OrientationAndVectorConversionService (OVCS) class provides public methods that can be
used to convert orientations and vectors between two 3D coordinate reference frames. The
constructor takes a CoordinateConversionService (CCS) object as a parameter. This CCS object
must be constructed with the appropriate source and target 3D coordinate reference frames. The
OVCS object uses this CCS object to obtain information about the source and target coordinate
reference frames, and to perform any required coordinate conversions between them.

1 For Transverse Mercator, there were also 26,635 points that produced warnings, due to the distance of the point
from the central meridian of the projection.

43

The methods convertOrientation and convertOrientationTargetToSource are used to convert
orientation information. The method convertOrientation converts a specified Orientation with
respect to a local tangent frame associated with a specified origin point in the source coordinate
reference frame, to the local tangent frame associated with the specified origin point in the target
coordinate reference frame. The method convertOrientationTargetToSource reverses the roles of
the source and target coordinate reference frames.

The methods convertVector, convertVectorTargetToSource, and convertVectorInBodyFrame are
used to convert vector quantities, such as velocity and acceleration information. The method
convertVector convert a specified vector quantity with respect to a local tangent frame associated
with a specified origin point in the source coordinate reference system, to the local tangent frame
associated with a specified origin point in the target coordinate reference frame. The method
convertVectorTargetToSource reverses the roles of the source and target coordinate reference
frames. The method convertVectorInBodyFrame allows the source vector to be specified in
terms of a body frame rather than a local tangent frame, by specifying the orientation of the body
frame with respect to a local tangent frame.

The class Orientation represents the orientation of one set of 3D coordinate reference frame axes
with respect to another. It provides a constructor, as well as five pairs of access methods that
support five different orientation representations:

1) Orientation, which initializes the object to an identity matrix,

2) setAxisAngle and getAxisAngle,

3) setEulerAnglesZXZ and getEulerAnglesZXZ,

4) setTaitBryanAngles and getTaitBryanAngles,

5) setMatrix3x3 and getMatrix3x3, and

6) setQuaternion and getQuaternion.

These five orientation parameter classes represent various ways of representing orientation
information.

The axis-angle representation of an orientation consists of a unit vector n (with components n1,
n2, and n3) and a rotation angleθ . As shown in Figure 25, this represents a rotation of the world
coordinate axes through the angle θ about the axis defined by n. This rotation, indicated by the
red arrows, relates the world coordinate axes (x, y, z), shown in green, with the aircraft body axes
(x’, y’, z’), shown in blue. The green-tinted plane in the figure is parallel to the xy-plane of the
world coordinate system, while the blue-tinted plane is the aircraft body x’y’-plane. The rotation
direction is determined by the right hand rule, i.e., if the right hand grasps the vector, with the
thumb pointing in the direction of the vector, the fingers curl around the vector in the direction of
the rotation angle θ .

44

Figure 24: JView Orientation and Vector Conversion Service API

class JView OVCS API

OrientationAndVectorConversionService

OrientationAndVectorConversionService(_ccs)
convertOrientation(sourceOrigin, sourceOrientation, targetOrigin, targetOrientation)
convertTargetToSourceOrientation(targetOrigin, targetOrientation, sourceOrigin, sourceOrientation)
convertVector(sourceOrigin, sourceVector, targetOrigin, targetVector)
convertTargetToSourceVector(targetOrigin, targetVector, sourceOrigin, sourceVector)
convertVectorInBodyFrame(sourceOrigin, sourceOrientation, sourceVector, targetOrigin, targetVector)

Orientation

Orientation()
setAxisAngle(_axisAngle)
getAxisAngle()
setTaitBryanAngles(_taitBryanAngles)
getTaitBryanAngles()
setEulerZXZAngles(_eulerZXZAngles)
getEulerZXZAngles()
setQuaternion(_quaternion)
getQuaternion()
setMatrix3x3(_matrix3x3)
getMatrix3x3()

Vector3D

Vector3D(_vX, _vY, _vZ)
setX(_vX)
getX()
setY(_vY)
getY()
setZ(_vZ)
getZ()

AxisAngle

AxisAngle(_axis, _angle)
getAxis()
getAngle()

EulerZXZAngles

EulerZXZAngles(_spin, _nutation, _precession)
getSpin()
getNutation()
getPrecession()

Matrix3x3

Matrix3x3()
Matrix3x3(_a11, _a12, _a13, _a21, _a22, _a23, _a31, _a32, _a33)
set(_a11, _a12, _a13, _a21, _a22, _a23, _a31, _a32, _a33)
getA11()
getA12()
getA13()
getA21()
getA22()
getA23()
getA31()
getA32()
getA33()

Quaternion

Quaternion(_e0, _e1, _e2, _e3)
getE0()
getE1()
getE2()
getE3()

TaitBryanAngles

TaitBryanAngles(_roll, _pitch, _yaw)
getRoll()
getPitch()
getYaw()

45

Figure 25: Axis-Angle Representation of Orientation

The class AxisAngle specifies the parameters that allow an Orientation object to be instantiated
using an axis-angle representation. It consists of an axis, specified by a 3D vector, and a rotation
angle about that axis. The vector is expressed in terms of its three components in the world CRF.
The rotation angle is specified in radians.

Euler angles specify an orientation in terms of three consecutive rotations about the principal
coordinate system axes. There are twelve distinct ways to select such a sequence of rotations
(for right-handed axes). Each of these orderings is called an Euler angle convention.
Unfortunately, there is little agreement on how to identify these conventions.

46

Figure 26: Euler Angle Z-X-Z Representation of Orientation

The JView OVCS software supports the Euler angle convention identified as the z-x-z
convention. This is also known as the 3-1-3 convention, or the x-convention. (The OVCS
software also supports the Tait-Bryan angle representation, which is another widely used Euler
angle convention.) As shown in Figure 26, this involves a sequence of three rotations that relate
the world coordinate axes, shown in green, with the aircraft body coordinate axes, shown in blue.
The green tinted plane in the figure is parallel to the world reference system xy-plane, while the
blue-tinted plane is the aircraft body x’’’y’’’-plane.

The first rotation, ()z αô , is about the z-axis, through angle α . This yields the x’ and y’ axes,
shown in yellow in Figure 26, while the z axis, shown in green, remains unchanged.

The second rotation, ()x βô , is about the (original) x-axis, through angle β . This yields the x’’,
y’’, and z’’ axes, shown in orange in Figure 26.

47

The third rotation, ()z γô , is again about the (original) z-axis, through angle γ . This yields the
x’’’, y’’’, and z’’’ axes, shown in blue in Figure 26, which are aligned with the aircraft body
axes.

The red arrows in Figure 26 show how the x, y and z axes, shown in green, are progressively
transformed by each of these rotations to become first the x’, y’ and z’ axes, shown in yellow,
then the x’’, y’’ and z’’ axes, shown in orange, and finally the x’’’, y’’’ and z’’’ axes, shown in
blue.

In some contexts, α is called the spin angle, β is called the nutation angle, and γ is called the
precession angle.

The class EulerZXZAngles specifies the parameters that allow an Orientation object to be
instantiated using an Euler angles ZXZ representation. It consists of three rotation angles
specified in radians.

Another widely used Euler angle convention is the x-y-z convention. This convention is used in
the Distributed Interactive Simulation (DIS) standard. Euler angles in this convention are called
Tait-Bryan angles. They are also sometimes called Cardano angles, or nautical angles. As
shown in Figure 27, this involves a sequence of three rotations that relate the world coordinate
axes, shown in green, with the aircraft body coordinate axes, shown in blue. The green tinted
plane in the figure is parallel to the world reference system xy-plane, while the blue-tinted plane
is the aircraft body x’’’y’’’-plane.

The first rotation, ()x ϕô , is about the x-axis, through angle ϕ . This gives the y’, and z’ axes,
shown in yellow in Figure 27, while the x axis remains unchanged.

The second rotation, ()y θô , is about the (original) y-axis, through angle θ . This gives the x’’,
y’’, and z’’ axes, shown in orange in Figure 27.

The third rotation, ()z ψô , is about the (original) z-axis, through angle ψ . This gives the x’’’,
y’’’, and z’’’ axes, shown in blue in Figure 27, which are aligned with the aircraft body axes.

The red arrows in Figure 27 show how the x, y, and z axes, shown in green, are progressively
transformed by each of these rotations to become first the x’, y’, and z’ axes, shown in yellow,
then the x’’, y’’, and z’’ axis, shown in orange, and finally the x’’’, y’’’, and z’’’ axis, shown in
blue.

In some contexts, ϕ is called the roll (or bank or tilt) angle, θ is called the pitch angle, and ψ is
called the yaw (or heading or azimuth) angle. Figure 27 is consistent with these terms as used
with an East-North-Up (ENU) axis convention.

48

Figure 27: Tait-Bryan Angle Representation of Orientation

The class TaitBryanAngles specifies the parameters that allow an Orientation object to be
instantiated using a Tait-Bryan angles representation. It consists of three rotation angles
specified in radians.

The orientation of a rigid body can also be represented in the form of a 3x3 rotation matrix. To
represent the Euler angle z-x-z convention discussed above, the equivalent 3x3 rotation matrix
representation is:

() () ()
cos cos cos sin sin cos sin cos cos sin sin sin
sin cos cos cos sin cos cos cos sin sin sin cos

sin sin sin cos cos

α β γ

α γ β α γ β α γ α γ β α
α γ β α γ β α γ α γ β α

β γ β γ β

=

− +⎛ ⎞
⎜ ⎟− − −⎜ ⎟
⎜ ⎟−⎝ ⎠

z x zΩ Ω Ω

49

The class Matrix3x3 specifies the parameters that allow an Orientation object to be instantiated
using a 3x3 rotation matrix representation. It consists of the nine matrix elements.

The word “quaternion” means “a set of four”. Quaternions are elements of a 4-dimensional
vector space. They were first described by the Irish mathematician Sir William Rowan Hamilton
in 1843 and applied to mechanics in three-dimensional space. From a purely geometric point of
view, a quaternion may be regarded as the quotient of two vectors, or, equivalently, as the
operator that transforms one vector into another. Due to certain compactness, efficiency, and
stability advantages over matrices, quaternions have found their way into applications in
computer graphics, robotics, global navigation, and the orbital mechanics of satellites.

In analogy to complex numbers, quaternion axes , , ,i j k are defined with the following
relationships: 2 2 2 1= = = = −i j k ijk . A quaternion q is denoted as 0 1 2 3e e e e= + + +q i j k .
This is known as the Hamilton form. The first term 0e is called the “real” (or “scalar”) part of q
and 1 2 3e e e+ +i j k is called the “imaginary” (or “vector”) part of q . The OVCS software uses a
convention known as the 4-tuple form, which is simply the 4-tuple of numbers ()0 1 2 3, , ,e e e e=q .

The class Quaternion specifies the parameters that allow an Orientation object to be instantiated
using a quaternion representation. It consists of a 4-tuple of numbers, the scalar part and the
three vector parts. The parameter values must meet the constraint: e e e e+ + + =2 2 2 2

0 1 2 3 1

Finally, the class Vector3D represents a vector quantity in a 3D coordinate reference frame. It
provides a constructor, as well as three pairs of access methods for the individual vector
components:

The JView Orientation and Vector Conversion application is called JView OVCS GEOTRANS
3.0J. It is an extended and customized version of the JView GEOTRANS 3.0J application. Its
GUI is shown in Figure 28. The left side of the GUI is a customized version of the JView
GEOTRANS 3.0J GUI for coordinate conversion that is limited to three-dimensional coordinate
system types, i.e., Geodetic, Geocentric, and Local Cartesian. It is used to specify the source and
target coordinate systems and datums for orientation and vector conversion operations. It can
also be used to perform coordinate conversions among the three-dimensional coordinate system
types. The right side of the GUI supports orientation and vector conversion operations between
the three-dimensional coordinate system types selected on the left side. The Options menu is
used to select between orientation, vector, and vector in body frame conversion operations.

For orientation conversion operations, a pull-down menu on the right side allows any of the
supported orientation representations to be selected, causing appropriate fields to be displayed.
For vector conversion operations, the three vector component fields are displayed. For both
orientation and vector conversion operations, the conversion buttons between the upper and
lower panels can be used to convert in either direction. For vector in body frame conversion
operations, which are not bidirectional, the upper panel displays both orientation and vector
component fields for input, while the lower panel displays the vector componet outputs.

50

Figure 28: JVIEW OVCS GEOTRANS 3.0J Application GUI

Testing of the JView Orientation and Vector Conversion Service software was performed using
the set of test cases being developed by the SEDRIS organization for testing the orientation and
vector conversion operations that are being added to the SEDRIS SRM. However, this set of test
cases is still under development, and was very limited at the time that the testing of the JView
Orientation and Vector Conversion Service software was performed. Further testing of the
JView Orientation and Vector Conversion Service software is recommended once the SEDRIS
SRM orientation and vector conversion test set becomes fully mature.

51

4 DISTRIBUTED MISSION OPERATIONS (DMO) TEST HARNESS (DMOTH)
The Distributed Missions Operations (DMO) Test Harness (DMOTH) software was developed to
support research and experimentation on DMO Infrastructure technologies. It is composed of
freely releasable open source and government software components. As shown in Figure 29, it
includes a set of simple applications that send and receive distributed simulation traffic using the
Distributed Interactive Simulation (DIS) and High Level Architecture (HLA) protocols. Other
existing DMO applications can also be included, though it may be difficult to precisely control
the amount and types of message traffic that they generate. A control application allows multiple
sender and receiver applications to be started, paused, and stopped on multiple networked
systems running various Windows or Linux operating systems. All sent and received data
packets are archived in local MySQL databases. XML configuration files are used to control the
numbers and locations of the sender and receiver applications, as well as the distributed
simulation traffic generated by each sender application. A post-processing application then
gathers all of the archived data into a single database, relating the sent and received data packets
to each other. This database can then be queried to evaluate packet loss, packet latency, and a
variety of other performance criteria.

Figure 29: DMOTH System Configuration

The architecture of the DMOTH software is shown in Figure 30. It consists of four types of
applications:

1) DMOTH Sender Application – which generates, sends, and archives distributed
simulation data packets using either the DIS or HLA protocol,

2) DMOTH Receiver Application – which receives and archives distributed simulation data
packets using either the DIS or HLA protocol,

3) DMOTH Controller Application – which allows multiple DMOTH Sender and Receiver
Applications to be started and controlled on multiple networked computers, and

52

4) DMOTH Analyzer Application – which integrates the individual databases created by the
DMOTH Sender and Receiver applications to archive the sent and received data packets
into a single database for each experiment run that can be used to analyze the
performance of the DMO network.

Figure 30: DMOTH Software Architecture

The DMOTH applications communicate with each other using two networks: the DMO
Network supports either the DIS or HLA protocols to send and receive distributed simulation
data packets. A separate control network supports communication between the DMOTH
Controller application and multiple DMOTH Sender and Receiver applications, using the Java™
Remote Method Invocation (RMI) mechanism. Each DMOTH Sender and Receiver application
registers with the local RMI server on the computer where it is executing. The DMOTH
Controller connects with each Sender and Receiver application, and then passes them
instructions that specify their role in the experiment run.

Normally, the DMOTH Controller application runs on one computer, while multiple DMOTH
Sender and Receiver applications run on other computers on the network. Although multiple
DMOTH Sender and/or Receiver applications can be run on the same computer, normally each
runs on a separate computer, so that they do not compete with one another for resources.

53

The DMOTH Controller application reads an XML configuration file that specifies how many
Sender and Receiver applications are to be run, which computer each application is to run on,
and where each application is to archive the data packets that it sends or receives. It also
contains the RMI connection information needed to establish communication between the
DMOTH Controller application and each Sender and Receiver applications.

The DMOTH Controller application creates and manages a “master” database (dmoth_tables)
that keeps track of the data packets archived during each experiment run. It consists of a single
table that contains an entry for each data packet archive created by the DMOTH Sender and
Receiver applications during each experiment run. This information is used by the DMOTH
Analyzer application to find and integrate the individual archives.

Each Sender or Receiver application reads a simpler XML configuration file that contains
corresponding RMI connection information. Once the RMI connection is established, each
application receives information from the DMOTH Controller, specifying what distributed
simulation protocol (DIS or HLA) is to be used, and where it is to archive the data packets that it
sends and receives. Each DMOTH Sender application also reads an XML scenario file, specified
by the Controller, which specifies what type(s) and amount of simulation data packets are to be
generated.

The DMOTH Analyzer application is a post-processing application that reads the “master”
database created by the DMOTH Controller application, and uses the information that it contains
for a specified experiment run to integrate the individual data packet archives created by each
DMOTH Sender and Receiver application into a results database for that experiment run. This
results database contains a table that contains all of the data packets sent by all DMOTH Sender
applications during that experiment run, another table that contains all of the data packets
received by all DMOTH Receiver applications during that experiment run, and a join table that
associates each data packet that was sent with each of the corresponding data packets that were
received. The results database can then be analyzed to determine how many packets were lost,
the latency of each packet, etc.

DMOTH is a distributed software system designed to operate on Intel x86 compatible hardware
running Microsoft Windows and/or Linux operating systems. The disk drive(s) used by the
DMOTH software must be large enough to store the sent and received data packets that the
DMOTH archives, as well as the analysis database, which associates sent packets with received
packets. The recommended hardware requirements are as follows:

 Processor: Intel Pentium 4 3.0 GHz or equivalent

 Memory: 2GB minimum

 Storage: 60GB minimum

Optical Drive: CD±R or DVD±R drive

54

The prerequisite software, which must be installed prior to installing the DMOTH software,
includes:

1) Sun Java™ SE Run-time Environment (JRE), version 1.6 or newer,

2) MySQL.Server, version 5.1 or newer, and

3) MySQL Tools, version 5.0 or newer.

MySQL is a relational database management system (RDBMS), which runs as a server providing
multi-user access to a number of databases. MySQL is owned and sponsored by the Swedusg
company MySQL AB, which is now a subsidiary of Sun Microsystems, which holds the
copyright to most of the codebase. The source code is available under terms of the GNU General
Public License, as well as under a variety of proprietary agreements. Downloads are available
at: http://www.mysql.com/.

The DMOTH software depends on several external components. These external components
include:

1) Open-DIS – an open source implementation of the Distributed Interactive Simulation
(DIS) standard;

2) Portico – an open source implementation of the High Level Architecture (HLA) Run
Time Infrstructure (RTI) for distributed simulation;

3) Jpcap – an open source Java™ library for capturing and sending network packets;

4) Groovy – an open source, Java-based scripting language (version 1.6 or newer).

Open-DIS is a free, open source implementation of the Distributed Interactive Simulation (DIS)
standard (IEEE 1278) in C++ and Java™. Open-DIS was developed primarily by the MOVES
Institute at the Naval Postgraduate School. It is available under a BSD licence from: http://open-
dis.sourceforge.net/Open-DIS.html.

Portico is an open source, cross-platform High Level Architecture (HLA) Run Time
Infrastructure (RTI) implementation that is intended to support production and continued
research and development in distributed simulation. Portico is licensed under the terms of the
Common Developer and Distribution License (CDDL). Copies of the Portico software can be
downloaded at: http://porticoproject.org/index.php?title=Main_Page.

Jpcap is a Java™ library for capturing and sending network packets. Jpcap can capture Ethernet,
IPv4, IPv6, ARP/RARP, TCP, UDP, and ICMPv4 packets. Jpcap is open source, and is licensed
under GNU LGPL. It has been tested on Microsoft Windows (98/2000/XP/Vista), Linux
(Fedora, Mandriva, Ubuntu), Mac OS X (Darwin), FreeBSD, and Solaris. Jpcap is available at
http://netresearch.ics.uci.edu/kfujii/jpcap/doc/.

http://www.mysql.com/
http://open-dis.sourceforge.net/Open-DIS.html
http://open-dis.sourceforge.net/Open-DIS.html
http://open-dis.sourceforge.net/Open-DIS.html
http://porticoproject.org/index.php?title=Main_Page
http://netresearch.ics.uci.edu/kfujii/jpcap/doc/

55

Groovy is used to implement the DMOTH Analyzer application. Groovy is an open source
dynamic scripting language for the Java Virtual Machine. It is consistent with Java syntax, and
builds upon the strengths of Java, but has additional features inspired by languages like Python,
Ruby, and Smalltalk. Groovy compiles to Java bytecode. Groovy uses a BSD / Apache style
licence. It is available at http://groovy.codehaus.org/.

The DMOTH software uses several different types of configuration files to control its operation.
Each individual DMOTH Sender or Receiver application uses a small XML configuration file to
register itself with the local RMI registry, so that when the Controller application initializes, it
can communicate with that Sender or Receiver application via RMI. These files are identical for
both Sender applications and Receiver applications.

The DMOTH Controller application users a larger XML configuration file to connect to one or
more Sender applications and one or more Receiver applications, distributed across multiple
systems in a network.

Each individual DMOTH Sender application uses an XML configuration file to control the types
and numbers of data packets that it generates.

The DMOTH Analyzer application also uses an XML configuration file to locate the master
experiment database created by the Controller application, and to determine where to put the
results database containing the results of a specific experiment.

When using the HLA protocol, the DMOTH software requires an HLA Federation Object Model
(FOM) file. This file defines the objects and interactions that can be sent and received by the
individual federate that make up the federation. The FOM that is to be used by each DMOTH
Sender application is specified in the APPLICATION element for that application in the
Controller configuration file. For development and testing, DMOTH used the Real-time
Platform Reference (RPR) FOM exclusively, primarily because of its compatibility with the DIS
protocol. The use of a significantly different FOM might require changes to the DMOTH Sender
application software.

When using the HLA protocol, the DMOTH software requires an HLA RTI Initialization Data
(RID) file. Because it uses the Portico implementation of the HLA RTI, the DMOTH software
uses a Portico RID file.

When using the DMOTH software to run a DMO experiment, the general sequence of steps is as
follows:

1) Start each of the individual DMOTH Sender and Receiver applications required for the
specific experiment. Normally, each of these applications is run on a separate computer.
The user interface of a DMOTH Sender/Receiver application is shown in Figure 31.

2) Start the DMOTH Controller application, and use it to initialize and start the remote
Sender and Receiver applications to generate, send, receive, and archive distributed
simulation data packets. When a sufficient number of data packets have been sent,
received, and archived, use the DMOTH Controller to stop the experiment. The user
interface of the DMOTH Controller application is shown in Figure 32.

http://groovy.codehaus.org/

56

3) Run the DMOTH Analyzer application to create an integrated database of experiment
results, relating the data packets sent by each Sender application to the corresponding
data packets received by each Receiver application.

Figure 31:DMOTH Sender/Receiver Application Running

Figure 32: DMOTH Controller Application Running

The DMOTH Analyzer reads the master database created by the Controller application, and
creates a results database that integrates the individual databases created by each of the remote
Sender and Receiver applications. The results database consists of a table containing all of the
data packets sent during the experiment run, another table containing all of the data packets
received during the simulation run, and a join table that associates each sent packet with all of
the corresponding received packets. This database can then be queried to analyze the
performance of the tested configuration.

57

The MySQL Query Browser, or any other database visualization tool, can be used to view and
query the results database, which is named “dmoth_results” concatenated with the name of the
experiment run. Figure 33 shows the content of the master_send table, which contains all of the
data packets sent by all DMOTH Sender applications during the experiment run. The
master_recv table similarly contains all of the data packets received by all DMOTH Receiver
applications during the experiment run. The send_recv_join table associates each data packet
send with all corresponding data packets received.

Figure 33: Results Database, Master Sent Packets Table

The DMOTH “master” database is created and managed by the DMOTH Controller Application,
and keeps track of multiple experiment runs, and the multiple data packet archives created by
each DMOTH Sender and Receiver application that is involved in each simulation run. This
database consists of a single table, named “list_of_tables”, which contains one entry for each
data packet archive created by DMOTH Sender and Receiver applications.

The DMOTH data packet archive database is created and managed by the DMOTH Controller
application, but is populated by the individual DMOTH Sender and Receiver applications that
execute during each experiment run. During each experiment run, each DMOTH Sender or
Receiver application adds a new table to this database to archive the data packets that it sends or
receives. This database thus contains one table for each data packet archive created by a

58

DMOTH application during a given experiment run. The name of each table is dynamically
generated by the DMOTH Controller application, and consists of the name of the experiment run
followed by the name of the application that archived the data packets that it contains. Each
table contains an entry for each data packet sent or received by a particular application during a
particular experiment run, and includes the following columns:

DMOTH experiment run results are created dynamically by the DMOTH Analyzer application.
A new experiment run results database is created each time the DMOTH Analyzer application is
executed, replacing any existing database with the same name. The name of each DMOTH
experiment run results database is “dmoth_results” followed by the name of the experiment run,
including the date-time string. An experiment run results database contains three tables:

1) master_send – a table containing all of the data packets sent during the experiment run,

2) master_recv – a table containing all of the data packets received during the experiment
run,

3) send_recv_join – a table relating each sent data packet with all of the corresponding
received data packets.

The data packet join table (send_recv_join) contains an entry for each data packet sent by one
application and received by another. Each entry includes the sent and received packet keys, and
the elapsed time in milliseconds, derived from the timestamps in the other two tables.

59

5 NETWORK-CENTRIC SIMULATION (NSIM)
The Network-centric Simulation (NSim) tool was created by ManTech International Corporation
to support the AFRL Network-Centric SIGINT-Focused Information Enterprise (NCSFIE)
system. The NCSFIE system is a multi-platform, multi-sensor, distributed intelligent data fusion
system of systems. There are many excellent simulation tools available and there was no desire
to create a new tool just to test the NCSFIE system. However, after several spiral iterations of the
NCSFIE system working with other systems it became very apparent that the available tools
were lacking for this application.

The NCSFIE is a data fusion research system that may be configured to ingest a variety of
different sensor, network, and database/source feeds. Testing and development using the actual
feeds is problematic since this system is not deployed in an operational environment. As a result,
the NCSFIE system must generally use simulation data feeds to stimulate the data fusion engine.
These simulated feeds may be replaying real-world data or playing synthesized data. One of the
key aspects is that the simulation system must implement the data interface(s) of the actual
sensor or data network – so as to ensure that the adaptors and logic rules in the NCSFIE system
would work with the real sensors/networks when the NCSFIE system migrated to the field.

Existing simulator systems were limited in scope to one type of sensor or data feed, or classified
(which greatly hindered distributed team development), or were proprietary (which led to time
and cost issues). The NCSFIE team simulation group surveyed a number of simulation tools,
standards, and systems. The NCSFIE simulation is dependent on the availability of machine-to-
machine interfaces and heterogeneous data types from distributed platforms/sensors/networks.
Because these systems were not present, a reasonable match could not be found.

Figure 34: NSim Architecture

NSim was roughly patterned on the Simnet/DIS/PDU entity concept with a loose coupling of the
event player and the application-specific client consumers. The NSim application is unclassified
and written in Java in order to leverage the available array of enterprise tools and standards. The
NSim system architecture is shown in Figure 34.

NSim: GUI &
Event Player

NSim: GUI &
Event Player

Scenario DB
(Access, MySQL)

NSMs (UDP)

NSM file

Network Data Feed SSR
- Simulates TDL, NCCT,

JWICS, etc. data feeds/SOA

Network Data Feed SSR
- Simulates TDL, NCCT,

JWICS, etc. data feeds/SOA

Simulation SensoRs (SSRs)

Sensor SSR
- Simulates on-board sensors
- Real sensor interface
- Returns data only as real

sensor would have done

Sensor SSR
- Simulates on-board sensors
- Real sensor interface
- Returns data only as real

sensor would have done

UDP Network 1
Interface

Network 1
Interface

System under test

TCP/IP Socket Sensor 2
Interface

Sensor 2
Interface

Sensor
data files

…
One SSR for each sensor and

network data feed

Interfaces to simulated
sensors (SSRs):

- Real interface to sensor/net
- Includes control/tasking of

sensors/network

NSim Simulation System

NSim: GUI &
Event Player

NSim: GUI &
Event Player

Scenario DB
(Access, MySQL)

NSMs (UDP)

NSM file

Network Data Feed SSR
- Simulates TDL, NCCT,

JWICS, etc. data feeds/SOA

Network Data Feed SSR
- Simulates TDL, NCCT,

JWICS, etc. data feeds/SOA

Simulation SensoRs (SSRs)

Sensor SSR
- Simulates on-board sensors
- Real sensor interface
- Returns data only as real

sensor would have done

Sensor SSR
- Simulates on-board sensors
- Real sensor interface
- Returns data only as real

sensor would have done

UDP Network 1
Interface

Network 1
Interface
Network 1
Interface

Network 1
Interface

System under test

TCP/IP Socket Sensor 2
Interface

Sensor 2
Interface
Sensor 2
Interface

Sensor 2
Interface

Sensor
data files

…
One SSR for each sensor and

network data feed

Interfaces to simulated
sensors (SSRs):

- Real interface to sensor/net
- Includes control/tasking of

sensors/network

NSim Simulation System

60

The primary components of NSim are:

• GUI/Event Player The NSim GUI serves two purposes – it provides a visualization of
the entities and behaviors during playback, and it is used to edit/create scenarios. The Event
Player controls the playback and broadcast of the scenario events. It implements the interface
to the database and the messaging control logic. NCSFIE Simulation Messages (NSMs) are
output as the simulation “ground truth”. The GUI and Event player together comprise the
ScenSim application.

• Scenario Database The NSim Scenario Database is a MS Access or MySQL database
that contains tables which define the simulation entities, their attributes, and their state
changes, including Entity State Events (when entities exist), Entity Movement Events
(waypoints), and Entity Emission Events (when entities emit signals).

• Simulation Sensors The NSim Simulation Sensors (SSRs) simulate the data feeds from
sensors, data networks, or other systems into the system under test. The SSRs input the
“ground truth” NSMs output by the Event Player. Individual SSRs are designed to implement
the actual sensor/network interface messages and protocols of a specific sensor system. SSRs
can also accept control/tasking messages from the system under test. They are designed to
create and send messages as the actual sensor would when given the tasking commands and
ground truth inputs supplied to them.

• System Under Test Interfaces The interfaces of the system under test connect to the
individual SSRs. Typically these interfaces implement the actual sensor tasking protocols and
messages for the sensor system being modeled by an specific SSR.

Figure 35: NSim Entity and Event Types

EntityEmissionEvent

EntityStateEvent

SingleEntityWaypointEvent

DoubleEntityWaypointEvent

Comparable<Event>
<<Interface>>

Cloneable
<<Interface>>

Event

EmissionInstance

CommInstance

RadarInstance

RadarInstance

CommInstance

Entity

CommunicationSet

Emitter

GroundMover

Aircraft

GroundStation

Radar

EntityEmissionEvent

EntityStateEvent

SingleEntityWaypointEvent

DoubleEntityWaypointEvent

Comparable<Event>
<<Interface>>

Cloneable
<<Interface>>

Event

EntityEmissionEvent

EntityStateEvent

SingleEntityWaypointEvent

DoubleEntityWaypointEvent

Comparable<Event>
<<Interface>>

Cloneable
<<Interface>>

Event

EmissionInstance

CommInstance

RadarInstance

RadarInstance

CommInstance

EmissionInstance

CommInstance

RadarInstance

RadarInstance

CommInstance

Entity

CommunicationSet

Emitter

GroundMover

Aircraft

GroundStation

Radar

Entity

CommunicationSet

Emitter

GroundMover

Aircraft

GroundStation

Radar

61

As shown in Figure 35, NSim supports several types of entities, including aircraft, ground
vehicles, fixed ground facilities, communication systems, radars, and other emitters. It also
supports several types of events, including movement (waypoint) events, emission events, and
entity state change events such as creation and destruction. It is important to note that NSim is
not really a simulation. It does not actually model the behavior of the entities that it represents,
nor are there any causal links between the events that it generates. It is simply a playback
mechanism, sorting the entity state changes and events that are stored in its scenario database
into temporal order, and output them as messages in the NSM XML-based format.

Under this effort, NSim was interfaced with the JSB-RD distributed simulation environment.
This was accomplished using three different methods, as shown in Figure 36:

1) Information was extracted from the TBMCS Air Operations Database (AODB), describing
planned friendly air missions, and from the Modernized Integrated Database (MIDB),
describing the enemy order of battle, including the military units and facilities that were the
targets of the friendly air missions, as well as other relevant military units and facilities,
particularly those providing air defense for the air mission targets. This AODB and MIDB
information was then used, after some translation, to populate the NSim Scenario Database.

2) The JSAF scenario development tools were used to use the AODB and MIDB information
described above to create a JSAF input spreadsheet, mapping the AODB and MIDB entities
to the corresponding JSAF entities. This JSAF input data was then used, after some
translation, to populate the NSim Scenario Database.

3) JSAF was executed, using the input described above, and the JLogger software was used to
capture and archive all of the HLA entity state and interaction messages that were generated
by JSAF. These archived messages were then used, after some translation, to populate the
NSim Scenario Database.

Figure 36: NSim Scenario Database Population Methods

62

Together, these methods provided both the static data, including entity identifier and type
information, initial locations, etc., and the dynamic data, including entity movement, emission,
and combat events, needed to populate the NSim Scenario Database. NSim was then executed to
play back the scenario.

Table 4 lists the tables that make up the NSim Scenario Database. The contents of each of these
tables were mapped to the most appropriate values in the HLA entity state and interaction
messages output by JSAF and archived by JLogger. The contents of each of these messages, and
the relationships between them, are shown in Figures 37 through 40.

Table 4: NSim Scenario Database Tables

Table Name Description

ScenarioProperities Defines Scenario IDs and attributes (names, classifications, initial display
views, etc.)

Master Database info

ScenarioDesignNotes Design notes

EntityAttributes Defines all non-changing attributes of the Entity:
Unique Entity ID number, Parent ID, name, nomenclature, call sign, country,
initial location upon creation.

EntityStateEvents Defines the time period during which an Entity exists in a scenario.

EntityMovementEvents Waypoints and times for each Entity for each scenario.

EntityEmissionEvents On/off times for each Emission event (Radar/Comm set) with the Instance ID
(reference to the appropriate Parametric table for all parametric details) for
each scenario.

ElintInstanceID
Parametrics,
ComintInstanceID
Parametrics

Define all parametric values for emission events, referenced by InstanceID
(from Emission Events). InstanceIDs are unique to an emitter (Entity). They
may be reused in multiple events of the same type for the same emitter
(EntityID). They may be reused over multiple scenarios.

DisplayAttributes Defines how to display the entities on the NSim map (visible, emission events,
trails, etc.)

EmitterParametricList
(EPL)

An ELINT Instance ID parametric comes from an ELNOT with ranges as
defined by the EPL.

CommParametricList
(CPL)

A COMINT Instance ID parametric comes from a communication set with
ranges as defined by the CPL.

Figure 37 shows the abstract BaseEntity and PhysicalEntity classes, as well as the concrete Blip
class from the HLA federation object model (FOM) used in the scenario, which is a variation of
the Real-time Platform Reference (RPR) FOM. The BaseEntity class provides the identity and
type of each entity, along with location, orientation, and velocity information. Acceleration and
angular velocity fields are present, but are not populated by JSAF.

63

Figure 37: BaseEntity, PhysicalEntity, and Blip Classes

The PhysicalEntity class extends the BaseEntity class, adding damage state information, as well
as a variety of appearance flags. Although the PhysicalEntity abstract class has multiple
concrete subclasses, including Aircraft, GroundVehicle, and LifeForm, these do not add any
additional attribute information, and so are not relevant here.

The Blip class is used to represent detections output by radars and other sensors. The entity that
serves as the sensor platform is identified, as is the target entity. Additional information is
provided about the sensor that generated the detection. Estimated entity state information,
including type, allegiance, location, velocity, and position error are reported. If the target entity
is an emitter, emitter function, type, and bearing information is also included.

 class BaseEntity Blip & PhysicalEntity

BaseEntity

+ EntityIdentifier: EntityIdentifierStruct
+ EntityType: EntityTypeStruct
+ WorldLocation: WorldLocationStruct
+ Orientation: OrientationStruct
+ VelocityVector: VelocityVectorStruct
- AngularVelocityVector: AngularVelocityVectorStruct
- AccelerationVector: AccelerationVectorStruct
+ DeadReckoningAlgorithm: DeadReckoningAlgorithmEnum8
- IsFrozen: boolean

Bl ip

+ force: ForceIdentifierEnum8
+ marking: MarkingStruct
+ source_platform_marking: MarkingStruct
+ sensor_mode: SensorModeEnum32
+ sensor_emitter_function: EmitterFunctionEnum8
+ sensor_emitter_type: EmitterTypeEnum16
+ sensor_emitter_index: octet
report_time: unsigned long
detection_time: unsigned long
+ assoc_entity_id: RTIObjectIdStruct
+ target_probable_guise: EntityTypeStruct
+ target_probable_force: ForceIdentifierEnum8
+ target_position: WorldLocationStruct
+ target_velocity: VelocityVectorStruct
+ target_position_error: Ell ipsoidalError
+ target_emitter_function: EmitterFunctionEnum8
+ target_emitter_type: EmitterTypeEnum16
+ target_emitter_index: octet
+ target_bearing: double
+ target_bearing_error: double

PhysicalEntity

- AlternateEntityType: EntityTypeStruct
+ CamouflageType: ComouflageEnum32
+ DamageState: Da mageStatusEnum32
- EngineSmokeOn: boolean
+ FirePowerDisab led: boolean
+ FlamesPresen t: boolean
+ ForceIdentifier: ForceIdentifierEnum8
- HasAmmunitionSup plyCap: boolean
- HasFuelSupplyCap: boolean
- HasRecoveryCap: boolean
- HasRepairCa p: boolean
+ Immobilized : boolean
+ IsConcealed : boolean
+ Marking: MarkingStruct
+ PowerPlantOn: boolean
+ SmokePlumePresent: boolean
+ TentDeploye d: boolean
+ Trail ingEffectsCode: Trail ingEffectsCodeEnum32

+ : fi l led in
: not fi l led in; always blank
- : not fi l led in; always null

+SensorPlatform

1

+TargetEntity

1

64

Figure 38 shows the FOM classes and interactions that are involved in communication events.
The RadioTransmitter class represents communications emitters. It provides frequency,
bandwidth, power, modulation, antenna, and other information about each radio transmitter
object. It also associates each radio transmitter object with the platform entity that carries it.
The ApplicationSpecificRadioSignal class provides additional information about individual radio
signals, including data rate, message length, and protocol information. Each
ApplicationSpecificRadioSignal object is associated with a RadioTransmitter object.

Figure 38: Communication Classes and Interactions

 class Communication

GIESIM_M SG_RCVD

+ RECEIVING_ENTITY: GIESIM_ENTITY_ID
+ MESSAGE_ID: unsigned long
+ CUMULATIVE_LATENCY: float
+ NET_ID: unsigned long
- PAYLOAD: octet

GIESIM_M SG_SEND

+ ORIGINATING_ENTITY: GIESIM_ENTITY_ID
+ RECEIVING_ENTITY: GIESIM_ENTITY_ID
+ MESSAGE_ID: unsigned long
+ MESSAGE_LENGTH: unsigned long
+ CUMULATIVE_LATENCY: float
+ NET_TYPE_NUMBER: unsigned long
- PAYLOAD: octet

BaseEntity
PhysicalEntity

- AlternateEntityType: EntityTypeStruct
+ CamouflageType: ComouflageEnum32
+ DamageState: DamageStatusEnum32
- EngineSmokeOn: boolean
+ FirePowerDisab led: boolean
+ FlamesPresen t: boolean
+ ForceIdentifier: ForceIdentifierEnum8
- HasAmmunitionSup plyCap: boolean
- HasFuelSupplyCap: boolean
- HasRecoveryCap: boolean
- HasRepairCa p: boolean
+ Immobilized : boolean
+ IsConcealed : boolean
+ Marking: MarkingStruct
+ PowerPlantOn: boolean
+ SmokePlumePresent: boolean
+ TentDeploye d: boolean
+ TrailingEffectsCode: TrailingEffectsCodeEnum32

RadioTra nsmitter

+ AntennaPatternData: AntennaPatternStruct
+ CryptographicMode: CryptographicModeEnum32
+ CryptoSystem: Cryptog raphicSystemTypeEnum16
+ EncryptionKeyIdentifier: unsigned short
+ Frequency: unsigned long long
+ FrequencyBandwidth: float
+ FrequencyHopInUse: boolean
+ ModulationParameters: ModulationStruct
+ PseudoNoiseSpectrumInUse: boolean
+ RadioIndex: unsigned short
+ RadioInputSource: RadioInputSourceEnum8
- RadioSystemType: RadioTypeStruct
- RFModulationSystemType: RFModulationSystemTypeEnum16
- RFModulationType: RFModulationTypeStruct
+ TimeHopInUse: boolean
+ TransmitterPower: float
+ TransmitterOperationalStatus: T ransmitterOperationalStatusEnum8
+ WorldLocation: WorldLocationStruct

EmbeddedSystem

+ EntityIdentifier: EntityIdentifierStruct
+ HostObjectIdentifier: RTIObjectIdStruct
+ RelativePosition: RelativePositionStruct

RadioSignal

ApplicationSpec ificRadioSignal

+ HostRadioIndex: RTIObjectIdStruct
+ DataRate: u nsigned long
+ SgnalDataLength: unsigned short
+ SignalData: octet [1..1+]
+ TacticalDataLinkType: Ta cticalDataLinkTypeEnum16
+ TDLMessageCount: unsigned short
+ UserProtocolID: UserProtocolEnum32

+ : fi l led in
: not fi l led in; always blank
- : not fi l led in; always null

+SignalRadio

0. .1

+RadioPlatform 0. .1

+ReceivingEntity

1

+ReceivingEntity

1

1

Messa geId

1

+OriginatingEntity

1

65

The GIESim software generates two FOM interactions to represent communication events:
GIESIM_MSG_SEND and GIESIM_MSG_RCVD. Each GIESIM_MSG_SEND interaction
identifies the sending entity, the intended receiving entity, and the unique id of the message, the
length of the message, and the cumulative latency of the message. Each GIESIM_MSG_RCVD
interaction identifies an entity that received the message, the network id on which the message
was received, the cumulative latency of the message, and the unique id of the message. These
two interactions types are linked to each other via the unique message id.

Figure 39: Sensor Classes and Interactions

 class Sensors

BaseEntity
Bl ip

+ force: ForceIdentifierEnum8
+ marking: MarkingStruct
+ source_platform_marking: MarkingStruct
+ sensor_mode: SensorModeEnum32
+ sensor_emitter_function: EmitterFunctionEnum8
+ sensor_emitter_type: EmitterTypeEnum16
+ sensor_emitter_index: octet
report_time: unsigned long
detection_time: unsigned long
+ assoc_entity_id: RTIObjectIdStruct
+ target_probable_guise: EntityTypeStruct
+ target_probable_force: ForceIdentifierEnum8
+ target_position: WorldLocationStruct
+ target_velocity: VelocityVectorStruct
+ target_position_error: EllipsoidalError
+ target_emitter_function: EmitterFunctionEnum8
+ target_emitter_type: EmitterTypeEnum16
+ target_emitter_index: octet
+ target_bearing: double
+ target_bearing_error: double

BaseEntity
PhysicalEntity

- AlternateEntityType: EntityTypeStruct
+ CamouflageType: ComouflageEnum32
+ DamageState: Da mageStatusEnum32
- EngineSmokeOn: boolean
+ FirePowerDisab led: boolean
+ FlamesPresen t: boolean
+ ForceIdentifier: ForceIdentifierEnum8
- HasAmmunitionSupplyCap: boolean
- HasFuelSupplyCap: boolean
- HasRecoveryCap: boolean
- HasRepairCa p: boolean
+ Immobil ized : boolean
+ IsConcealed : boolean
+ Marking: MarkingStruct
+ PowerPlantOn: boolean
+ SmokePlumePresent: boolean
+ TentDeploye d: boolean
+ Trail ingEffectsCode: Trail ingEffectsCodeEnum32

EmitterSystem

+ EmitterFunctionCode: EmitterFunctionEnum8
+ EmitterType: Em itterTypeEnum16
+ EmitterIndex: octet
- EventIdentifier: EventIdentifierStruct

EmbeddedSystem

+ EntityIdentifier: EntityIdentifierStruct
+ HostObjectIdentifier: RTIObjectIdStruct
+ RelativePosition: RelativePositionStruct

EmitterBeam

+ BeamAzimuthCenter: float
+ BeamAzimuthSweep: float
+ BeamElevationCenter: float
+ BeamElevationSweep: float
+ BeamFunctionCode: BeamFunctionCodeEnum8
+ BeamIdentifier: octet
+ BeamParameterIndex: unsigned short
+ EffectiveRadiatedPower: float
+ EmissionFrequency: float
+ EmitterSystemIdentifier: RTIObjectIdStruct
+ FrequencyRange: float
+ PulseRepititionFrequency: float
+ PulseWidth: float
- SweepSynch: float

Jamme rBeam

+ JammingModeSequence: unsigned long
+ JammedObjectIdentifiers: RTIObjectArrayStruct
+ HighDensityJam: boolean

RadarBeam

+ HighDensityTrack: boolean
+ TrackObjectIdentifiers: RTIObjectArrayStruct

+ : fil led in
: not fil led in; always blank
- : not fi l led in; always null

+TrackedEntity

0. .1

+BeamEmitter

0. .1

+EmitterPlatform 0. .1

+SensorPlatform

1

+TargetEntity

1

66

Figure 39 shows the FOM classes and interactions that are involved in sensor-related events.
The Blip class, which represents individual detections, was discussed above. The EmitterSystem
class represents radars and other types of active sensors. The abstract EmitterBeam class, and its
concrete subclasses RadarBeam and JammerBeam, represent individual beams emitted by radars,
other active sensors, and jammers. The abstract EmitterBeam class provides the direction and
extent of the beam, as well as parameters such as power, frequency, pulse width, and pulse
repetition frequency. Each EmitterBeam is linked to its source emitter, while RadarBeams
identify the entity being tracked.

Figure 40: Combat Classes and Interactions

Figure 40 shows the FOM classes and interactions involved in combat events. The WeaponFire
interaction represents the firing of a specific weapon. The firing entity is identified, as is the
target entity. For missiles and other types of munitions that exist for a significant time while in
transit to the target, the munition entity may also be explicitly identified. For guns, the number
of rounds fired and the rate of fire are provided, along with warhead and fuse type information,
firing location, intended range, and initial velocity vector of the munition.

 class Combat

BaseEntity
PhysicalEntity

- AlternateEntityType: EntityTypeStruct
+ CamouflageType: ComouflageEnum32
+ DamageState: Da mageStatusEnum32
- EngineSmokeOn: boolean
+ FirePowerDisab led: boolean
+ FlamesPresen t: boolean
+ ForceIdentifier: ForceIdentifierEnum8
- HasAmmunitionSup plyCap: boolean
- HasFuelSupplyCap: boolean
- HasRecoveryCap: boolean
- HasRepairCa p: boolean
+ Immobilized : boolean
+ IsConcealed : boolean
+ Marking: MarkingStruct
+ PowerPlantOn: boolean
+ SmokePlumePresent: boolean
+ TentDeploye d: boolean
+ Trail ingEffectsCode: Trail ingEffectsCodeEnum32

Muni tion

+ LauncherFlashPresent: boolean

MunitionDetonation

+ DetonationLocation: WorldLocationStruct
+ DetonationResultCode: DetonationResultCodeEnum8
+ EventIdentiier: EventIdentifierStruct
+ FiringObjectIdentifier: RTIObjectIdStruct
+ FinalVelocityVector: VelocityVectorStruct
+ FuseType: Fu seTypeEnum16
+ MunitionObjectIdentifier: RTIObjectIdStruct
+ MunitionType: EntityTypeStruct
+ QuantityFired: unsigned short
+ RateOfFire: unsigned short
+ RelativeDetonationLocation: RelativePositionStruct
+ TargetObjectIdentifier: RTIObjectIdStruct
+ WarheadType: WarheadTypeEnum16

DamageAs sessment

+ SimulationNa me: string
+ SimulationVersion: string
+ EventIdentifier: EventIdentifierStruct
+ FiringObjectIdentifier: RTIObjectIdStruct
+ FiringObjectGuise: EntityTypeStruct
+ FiringObjectForce: ForceIdentifierEnum8
+ FiringObjectLocation: WorldLocationStruct
+ FiringObjectVelocity: VelocityVectorStruct
+ FiringObjectOrientation: OrientationStruct
+ FiringObjectMarking: MarkingStruct
+ TargetFromDeton ation: boolean
+ TargetObjectIdentifier: RTIObjectIdStruct
+ TargetObjectGuise: EntityTypeStruct
+ TargetObjectForce: ForceIdentifierEnum8
+ TargetObjectLocation: WorldLoationStruct
+ TargetObjectVelocity: VelocityVectorStruct
+ TargetObjectOrientation: OrientationStruct
+ TargetObjectMarking: MarkingStruct
+ MunitionObjectIdentifier: RTIObjectIdStruct
+ MunitionType: EntityTypeStruct
+ MunitionNam e: string
- SubstituteMunitionType: EntityTypeStruct
+ SubstituteMuniti onName: string
+ FuseType: Fu seTypeEnum16
+ WarheadType: WarheadTypeEnum16
+ QuantityFired: unsigned short
+ RateOfFire: unsigned short
+ DetonationLocation: WorldLocationStruct
+ FinalVelocityVector: VelocityVectorStruct
+ DetonationResultCode: DetonationResultCodeEnum8
+ RelativeDetonationLocation: RelativePositionStruct
+ Range: float
+ Error: float
+ PCatastrophic: float
+ PMobilityAndFirepower: float
+ PMobilityOnly: float
+ PFirePowerOnly: float
+ PNoKill: float
+ ComputedDamageResult: DISDamageStatusEnum32
+ DamageResultReason: DamageReasonEnum32
+ PreviousDamageState: DISDamageStatusEnum32
+ NewDamageState: DISDamageStatusEnum32

WeaponFire

+ EventIdentifier: EventIdentifierStruct
+ FireControlSolutionRange: float
+ FireMissionIndex: unsigned long
+ FiringLocation: WorldLocationStruct
+ FiringObjectIdentifier: RTIObjectIdStruct
+ FuseType: Fu seTypeEnum16
+ InitialVelocityVector: VelocityVectorStruct
+ MunitionObjectIdentifier: RTIObjectIdStruct
+ MunitionType: EntityTypeStruct
+ QuantityFired: unsigned short
+ RateOfFire: unsigned short
+ TargetObjectIdentifier: RTIObjectIdStruct
+ WarheadType: WarheadTypeEnum16

+ : fi l led in
: not fi l led in; always blank
- : not fi l led in; always null

+MunitionObject

1

+TargetObject

1

+FiringObject

1

1
Event

1. .*

1

Event

1. .*

+TargetObject

0. .1

+FiringObject

1

+MunitionObject 1
1

Event

1

+MunitionObject

1

+FiringObject

1
+TargetObject
0. .1

67

The MunitionDetonation interaction represents the detonation of the munition. Again, the firing
entity, target entity, and munition entity are all identified. Most of the information in the
WeaponFire interaction is repeated, except that the detonation location replaces the firing
location, and the final velocity vector replaces the initial velocity vector. The
MunitionDetonation interaction is linked to the corresponding WeaponFire interaction via the
unique event identifier.

The DamageAssessment interaction provides the results of the MunitionDetonation, in terms of
the effects on entities near the detonation location. Each DamageAssessment interaction is
linked to the corresponding WeaponFire and MunitionDetonation interactions via the unique
event id. Each DamageAssessment interaction also identifies the firing entity, the target entity,
and the munition entity. However, in this case, the target entity is not necessarily the intended
target identified in the WeaponFire and MunitionDetonation interactions. Instead, there is a
separate DamageAssessment interaction for each entity that is potentially affected by the
detonation. Each DamageAssessment interaction contains entity state information, including
location, orientation, and velocity, for both the firing and target entities, as well as warhead and
fuse type information, and/or number of rounds and rate of fire information, as appropriate.
Most important, each DamageAsssessment interaction contains information on how the
detonation event affected a specific target entity, including the range and relative position of the
detonation with respect to the target entity, various types of kill probabilities, and, finally, the
previous and new damage states of the target entity.

Figure 41: EntityAttribute Table Mapping

Figure 41 summarizes how the NSim Entity Attribute Table is populated, using a combination of
information extracted from the MIDB, AODB, and JSAF. MIDB and AODB are used for most
static information on adversary and friendly entities, respectively. Location information comes
from MIDB, AODB, or JSAF depending on the entity type. The locations of fixed facilities and
installations are obtained from MIDB and AODB, for adversary and friendly entities,

Field Name Data Type Description Source

EntityID Long Int Nonzero unique entity ID JSAF Jlogger (assigned by JSAF)

ParentEntityID Long Int EntityID of parent entity, if any Not Available (Jlogger data field not populated)

EntityType Text Class of entity type Assigned by scenario builder (based on existing scenarios)

EntityNomenclature Text Formal designation JSAF input data (unit type identifier)

EntityName Text Descriptive name AODB/MIDB (assigned callsign, facility table entry)

EntityOperatingCountry Text Two-letter country code AODB/MIDB (Pacifica Codes)

EntityAllegiance Text Hostile, Friendly, Unknown JSAF Input data

EntityCallsign Text Short designator (not necessarily unique) AODB/JSAF input data (JSAF Entity Marking)

EntityDisplayReference Text Reference to display attributes Assigned by scenario builder (inspection of available icons)

Latitude Double Float Latitude in decimal degrees of initial location MIDB/JSAF input data/Jlogger (data conversion needed)

Longitude Double Float Longitude in decimal degrees of initial location MIDB/JSAF input data/Jlogger (data conversion needed)

AltitudeMeters DoubleFloat MSL Height of initial location MIDB/JSAF input data/Jlogger (data conversion needed)

Field Name Data Type Description Source

EntityID Long Int Nonzero unique entity ID JSAF Jlogger (assigned by JSAF)

ParentEntityID Long Int EntityID of parent entity, if any Not Available (Jlogger data field not populated)

EntityType Text Class of entity type Assigned by scenario builder (based on existing scenarios)

EntityNomenclature Text Formal designation JSAF input data (unit type identifier)

EntityName Text Descriptive name AODB/MIDB (assigned callsign, facility table entry)

EntityOperatingCountry Text Two-letter country code AODB/MIDB (Pacifica Codes)

EntityAllegiance Text Hostile, Friendly, Unknown JSAF Input data

EntityCallsign Text Short designator (not necessarily unique) AODB/JSAF input data (JSAF Entity Marking)

EntityDisplayReference Text Reference to display attributes Assigned by scenario builder (inspection of available icons)

Latitude Double Float Latitude in decimal degrees of initial location MIDB/JSAF input data/Jlogger (data conversion needed)

Longitude Double Float Longitude in decimal degrees of initial location MIDB/JSAF input data/Jlogger (data conversion needed)

AltitudeMeters DoubleFloat MSL Height of initial location MIDB/JSAF input data/Jlogger (data conversion needed)

68

respectively, and are then fed into JSAF. The initial locations of moving entities come from
JSAF, after JSAF is used to deploy these entities. The scenario builder is responsible for
identifying the entity types, and the icons to be used to display the entities. However, these
assignments could be automated by constructing a database that maps MIDB, AODB, and JSAF
entity types to NSim entity types and icons.

Figure 42: Entity State Events Table Mapping

Figure 43: Entity Movement Events Table Mapping

 Field Name Data Type Description Source

ESEIndex Long Int Unique entity state event identifier Arbitrary incremented value

ScenarioID Long Int Unique scenario identifier Assigned by scenario builder

EntityID Long Int Unique entity identifier JSAF Jlogger (assigned by JSAF)

State Text Entity state (defined, exists, malfunctioning) Assigned by scenario builder (defaulted to "exists")

StateDescription Text Comments on state change Not Used

CreateAtScenarioStart? Boolean Entity exists from scenario start if TRUE TRUE except for cruise missiles (missile life span from Jlogger data)

ExistsToScenarioEnd? Boolean Entity exists until scenario ends if TRUE TRUE except for cruise missiles (missile life span from Jlogger data)

BeginDate Text Date entity comes into existence Assigned by scenario builder (missile life span from Jlogger data)

BeginTime Text Time entity comes into existence Assigned by scenario builder (missile life span from Jlogger data)

EndDate Text Date entity ceases to exist Assigned by scenario builder (missile life span from Jlogger data)

EndTime Text Time entity ceases to exist Assigned by scenario builder (missile life span from Jlogger data)

Field Name Data Type Description Source

ESEIndex Long Int Unique entity state event identifier Arbitrary incremented value

ScenarioID Long Int Unique scenario identifier Assigned by scenario builder

EntityID Long Int Unique entity identifier JSAF Jlogger (assigned by JSAF)

State Text Entity state (defined, exists, malfunctioning) Assigned by scenario builder (defaulted to "exists")

StateDescription Text Comments on state change Not Used

CreateAtScenarioStart? Boolean Entity exists from scenario start if TRUE TRUE except for cruise missiles (missile life span from Jlogger data)

ExistsToScenarioEnd? Boolean Entity exists until scenario ends if TRUE TRUE except for cruise missiles (missile life span from Jlogger data)

BeginDate Text Date entity comes into existence Assigned by scenario builder (missile life span from Jlogger data)

BeginTime Text Time entity comes into existence Assigned by scenario builder (missile life span from Jlogger data)

EndDate Text Date entity ceases to exist Assigned by scenario builder (missile life span from Jlogger data)

EndTime Text Time entity ceases to exist Assigned by scenario builder (missile life span from Jlogger data)

Field Name Data Type Description Source

EMEIndex Long Int Unique movement event identifier Arbitrary incremented value

ScenarioID Long Int Unique scenario identifier Assigned by scenario builder

Entity Long Int Unique entity identifier JSAF Jlogger (assigned by JSAF)

EventDate Text Date of movement event Assigned by scenario builder

EventTime Text Time of movement event JSAF input data (defined by scenario designer)

WayPointDescription Text Description of the way point for user reference Not Used

GeneralDescription Text Overall comments on movement event Not Used

Latitude Double Float Latitude in decimal degrees Jlogger (data conversion needed)

Longitude Double Float Longitude in decimal degrees Jlogger (data conversion needed)

AltitudeMeters Double Float MSL height Jlogger (data conversion needed)

Sub-Scenario Comment Text Identifies sub-scenario in which event is used Assigned by scenario builder

Field Name Data Type Description Source

EMEIndex Long Int Unique movement event identifier Arbitrary incremented value

ScenarioID Long Int Unique scenario identifier Assigned by scenario builder

Entity Long Int Unique entity identifier JSAF Jlogger (assigned by JSAF)

EventDate Text Date of movement event Assigned by scenario builder

EventTime Text Time of movement event JSAF input data (defined by scenario designer)

WayPointDescription Text Description of the way point for user reference Not Used

GeneralDescription Text Overall comments on movement event Not Used

Latitude Double Float Latitude in decimal degrees Jlogger (data conversion needed)

Longitude Double Float Longitude in decimal degrees Jlogger (data conversion needed)

AltitudeMeters Double Float MSL height Jlogger (data conversion needed)

Sub-Scenario Comment Text Identifies sub-scenario in which event is used Assigned by scenario builder

69

Figure 42 summarizes how the NSim Entity State Events Table is populated. All entities are
assumed to exist throughout the scenario, with the exception of cruise missiles. Cruise missile
entities are created when they are launched, and are destroyed when they detonate. The cruise
missile entity creation and destruction times are extracted from the Jlogger data generated when
JSAF executes the scenario.

Figure 43 shows how the NSim Entity Movement Events Table is populated, using the HLA
PhysicalEntity updates that are output by JSAF and captured by Jlogger. These are extracted
from the Jlogger archive. Whenever a JSAF entity is moving, the PhysicalEntity entity state
updates for that entity are converted into corresponding NSim Entity Movement event records.
In general, the PhysicalEntity updates generated by JSAF are of much higher frequency than
typical NSim movement events, which normally only include waypoints where the entity
significantly changes speed or direction. This produces much more detailed and realistic
movement. For example, ground vehicles tend to follow roads much more accurately than when
using NSim alone. Aircraft maneuvers are also much more realistic, as they are based on the
output of JSAF’s 6-degree of freedom flight dynamics model. However, only the location
information in the PhysicalEntity updates can be exploited, as the NSim Entity Movement
Events Table does not include any fields for orientation or velocity information.

Unfortunately, attempts to map JSAF output to the NSim Entity Emission Event Table, and the
associated ELINT Instance and COMINT Instance ID Parametrics Tables, were much less
successful. There were several reasons for this:

1) Most emitters are “built-in” to the JSAF platform entity specifications, rather than being
separate entities in themselves. It is extremely difficult to modify the existing JSAF entity
configurations, requiring the editing of multiple text files containing the specifications, and
then the rebuilding of the JSAF system to use the modified files.

2) Similarly, the behavior of the JSAF emitters is largely automated. With the exception of the
friendly communications modeled by GIESim, JSAF emitters cannot be explicitly turned on
and off. Instead, they generate emissions consistent with their higher-level tasking.

3) The JSAF emitter attributes could not be easily mapped to the NSim emitter parameters in a
straightforward manner. The level of detail, and the ways in which parameters were
represented were too different to be easily resolved.

4) Finally, in the output generated by JSAF, many of the fields needed to populate the NSim
ELINT and COMINT Instance ID Parametrics Tables were not populated with values, but
instead contained nulls. This reflects the incomplete implementation of many emitters in
JSAF.

70

Despite these limitations, it was possible to use NSim to play back scenarios that had previously
been executed by JSAF and archived by Jlogger. Figures 44 and 45 show NSim executing the
same scenario discussed earlier in section 2.3. Figure 44 shows the locations of all entities at the
start of the scenario. This figure is comparable to Figure 15. The two B-52s and the CALCMs
that each B-52 launches are shown in the lower right. The Califon IADS elements are shown in
red in the lower-left part of the screen. Blue strike aircraft, ISR aircraft, airborne networking
aircraft, and UAVs are shown in blue in the upper left and center areas of the screen. Figure 45
shows a more detailed view of the Santiago Peak SA-5 site, showing the distribution of the
TELs, radars, and command and control vehicles at the site. This figure is comparable to Figure
17.

Figure 44: B-52s Launching Cruise Missiles

71

Figure 45: SA-5 Site

72

6 LESSONS LEARNED, CONCLUSIONS, AND RECOMMENDATIONS
For at least the past 30 years, AFRL/RI (and its predecessor organizations) has needed general-
purpose simulation capabilities to support R&D projects in the areas of command and control,
sensor exploitation and management, and communications. Prototype C4ISR software tools and
systems require realistic input data in order to test and demonstrate their functionality. This data
reflects the variety of entities that may populate the battlespace, including adversary and friendly
forces, as well as civilian populations. In many cases, this input data also has a significant
temporal aspect that reflects the behavior of these entities, as well as the many other events and
activities that occur within the battlespace. The importance of joint operations has made it
increasingly difficult for the Air Force to focus solely on the air and space domains; the entities
that operate in the ground and maritime domains must also be addressed. The increasing
importance of the cyber domain has brought a whole new set of challenges, as has the goal of
synchronizing air, space, and cyber operations into a single integrated whole.

After working with JSAF for several years now, it has become increasingly clear that JSAF is
not the answer to AFRL/RI’s simulation needs. The JSAF software contains an impressive set of
functionality. However, much of that functionality is very difficult to exploit in practice. JSAF
is a very large, very old, and very complex piece of software. JFCOM maintains a staff of
developers who are constantly modifying and extending the JSAF software to meet the specific
requirements of its ongoing experiments and exercises. Unfortunately, in this process, existing
functionality that is not critical to the next JFCOM event is commonly sacrificed. This can leave
external JSAF users in a very difficult position. When functionality that AFRL/RI depended on
stopped working, it rapidly became impractical to install any further JSAF updates.

Other large DoD simulation systems developed to support training also have a poor track record.
For example, JSIMS was cancelled after consuming a very large amount of resources, but before
producing any usable results. Under this effort, the Army’s OneSAF software was obtained and
examined as a possible replacement for JSAF. However, the OneSAF software was so large and
so complex, and the documentation so limited, that it was not possible to gain an adequate
understanding of how it works, or of whether it might be possible to extend it for use by the Air
Force, with the resources available.

Commercial entity-level simulation frameworks, such as MaK Technologies’ VR-Forces, or
Ternion Corporation’s FLexible Analysis, Modeling, and Exercise System (FLAMES), provide a
convenient starting point, and a great deal of off-the-shelf functionality. For example, FLAMES
has been used successfully by other AFRL directorates, including the Munitions directorate.
However, these COTS products tend to be expensive, particularly in the context of small R&D
project budgets, or of teams that involve multiple participants from academia and small
businesses, as well as government and larger contractors. They also tend to lock users in to a
single integrated solution. This has its foundation in the incompatibility of different RTI
implementations. Also, in addition to selling these software products, these companies derive a
significant portion of their revenue from selling their services as custom simulation developers,
as well as training. This creates a conflict of interest with respect to making their software
products as easy to understand and use as possible.

73

Finally, there a non-commercial simulation packages that have been developed to support
various programs, including other AFRL programs, such as the JForces packages used in the
Airborne Networking Technology (ANT) program. These also contain useful functionality.
However, they suffer from some of the same problems as the similar COTS products, including
lock-in, and lack of transparency. It is not uncommon for the developers of these systems to go
to great lengths to retain effective control of their software, frequently displaying great creativity
in making it difficult for others to understand, or even to use, their software without their direct
involvement.

Under this effort, the NSim software was evaluated, as described in section 5. While the NSim
does have an open structure, a Java implementation, and reasonably clear documentation, it is
not actually a simulation, as it does not provide any cause-and-effect linkage between the various
kinds of events that are included in its scenarios. It is merely a playback mechanism, which sorts
the events defined in its scenario database into the proper order and outputs them in the form of a
stream of XML messages. Therefore, while it can be used either as a front end driver to other
software tools, including other simulations, or as a back end playback mechanism, as was
demonstrated using archived JSAF output, the output of NSim is merely a restatement of its
input, with no additional value added. Also, it’s lack of support for both the DIS and HLA
simulation protocols means that it cannot be easily integrated with other simulation tools.

AFRL/RI needs an open source simulation framework that can be used to support a wide variety
of R&D projects across multiple topic areas, including command and control, operational
planning, operational assessment, communications networking, and sensor exploitation and
management, and which it can freely provide to its contractors and other partners. This effort
should be set up and managed as a long-term “meta-project”, drawing on multiple projects across
AFRL/RI for human and financial resources, but not too dependent on any one project for its
survival. It should be possible for individual contributors to come and go as new projects start,
and old projects end, or transition to engineering development.

This effort should make the fullest possible use of other open source software projects. For
example, it should leverage both the OpenDIS and PoRTIco projects to provide support for the
DIS and HLA protocols, respectively. For maximum flexibility, it should be Java-based, and
should make use of other open-source technologies such as the MySQL database management
system, and open source XML tools.

It should include a simulation engine that is capable of supporting either constrained or
unconstrained simulation, including real-time, scaled real-time, or as-fast-as-possible execution.
It should support parallel and distributed simulation methods, including both conservative and
optimistic synchronization.

74

It should include a framework of simulation classes representing entities, such as aircraft,
facilities, and ground vehicles, aggregates, such as military units, communication networks, and
installations, and components, such as sensors, weapons, and communication systems. It must
also be able to represent a variety of different types of relationships among instances of these
classes, representing command relationships, support relationships, and other types of functional
and operational relationships. This simulation framework should be extensible, so that concepts
for new systems, including military units (i.e., swarms of UAVs), networks, sensors, and
weapons can be easily implemented and evaluated.

It should also be able to represent the behavior of entities, aggregates, and components. This
should support a variety of mechanisms, including operator control of individual entities and
aggregates, and semi-autonomous behavior, so that entities are capable of responding to events
in a reasonable manner, even while engaged in carrying out other tasks. The general behavior
model will be one of the most critical elements, as it will play a central role in establishing the
cause-and-effect relationships that allow simulations to produce meaningful results.

The simulation framework should be capable of supporting multiple levels of detail, both in the
representation of entities, and in the representation of their behavior. For example, aircraft
movement should be able to be represented using linear interpolation between consecutive
waypoints, spline-based interpolation between waypoints to produce continuous trajectories,
and/or flight dynamics models of varying levels of complexity. Similarly, sensors,
communications, and weapons models of varying levels of detail should be supported, and
should be able to be combined with one another freely. This will require a carefully designed set
of common interface standards.

Tools for developing scenarios will need to be able to access and exploit data sources such as the
AODB within TBMCS for information on friendly force assets and plans, the MIDB for
information on adversary forces, and environmental databases for information on terrain,
weather, and other aspects of the environment. The MIDB fictional Pacifica databases provide a
rich, complex environment to support the basic testing and demonstrating of a wide variety of
prototype C4ISR tools and systems, while the real-world data in the MIDB can be used to
support more advanced testing and demonstrations. The adversary modeling capabilities being
developed by the Commander’s Predictive Environment (CPE) program, and the environmental
modeling capabilities being developed by the National Operational Environment Model (NOEM)
program, should also be leveraged. The capabilities provided by JView for accessing
environmental data should also be leveraged.

A change control board (CCB) consisting of representatives from multiple AFRL/RI divisions,
branches, and sections, as appropriate, should be established to maintain consistency.
Collaboration with the Air Force Agency for Modeling and Simulation (AFAMS), which is
developing requirements for a new generation of Air Force simulations, is particularly critical.

75

The recommendations resulting from this effort are summarized below:

1) JSAF remains poorly suited for use within a small, dynamic laboratory environment. It
requires a large, highly trained, and highly skilled staff to maintain, to operate, and especially
to modify or extend it. Extending or modifying the JSAF software in support of a specific
simulation experiment is difficult and time-consuming. Although it can be integrated with
other existing tools and C4ISR systems, this is not easy to accomplish. Continued use of
JSAF within AFRL/RI is therefore not recommended.

2) Detailed evaluations of more modern entity level simulations that support air operations
should continue in a search for a better solution, as well as to identify requirements.
Candidates include the Army’s OneSAF Objective Objective System (OOS), as well as
COTS simulations frameworks such as MaK Technologies VR-Forces and Ternion
Corporation’s FLAMES. However, these evaluations should be performed as separate,
discrete tasks, each with a specific budget and time frame. A key part of the evaluation
criteria should include how easy the simulation framework is to evaluate.

3) A meta-project should be created within AFRL/RI to develop an open, extensible simulation
framework that can be used to support the widest possible variety of R&D projects in
command and control, communications, sensor exploitation and management, and simulation
science, with representatives from multiple divisions and branches, including those involved
in all of these subject areas, across the air, space, and cyber domains. This project should
leverage existing AFRL/RI models, databases, and other information sources to the
maximum possible extent. It should be supported by a broad, diverse team of contractors,
including representatives from academia, small businesses, and large businesses. It should
initially focus on developing an architecture and a set of basic requirements for the
simulation framework.

76

7 REFERENCED DOCUMENTS
1) NGA TM 8358.1, Datums, Ellipsoids, Grids, and Grid Reference Systems, 1990.

2) NGA TM 8358.2, The Universal Grids: Universal Transverse Mercator (UTM) and Universal
Polar Stereographic (UPS), 1989.

3) MIL-STD-2401, Department of Defense World Geodetic System (WGS), 1994.

4) STANAG 2211, Geodetic Datums, ellipsoids, grids and grid references, Fifth Edition, 1991.

5) TEC-SR-7, Handbook for Transformation of Datums, Projections, Grids and Common
Coordinate Systems, 1996.

6) NGA, Department of Defense Glossary of Mapping, Charting, and Geodetic Terms, Fourth
Edition, 1981.

7) Rapp, Richard H., Geometric Geodesy - Part I; Department of Geodetic Science and Surveying,
The Ohio State University, Columbus, Ohio. 1984.

8) Rapp, Richard H., Geometric Geodesy - Part II; Department of Geodetic Science and Surveying,
The Ohio State University, Columbus, Ohio. 1987.

9) Snyder, J. P., Geological Survey Professional Paper 1395 Map Projections - A Working Manual,
1987.

10) IEEE 1278.1A-1998 - Standard for Distributed Interactive Simulation - Application protocols.

11) Simulation Interoperability Standards Organization (SISO), Guide for: DIS Plain and Simple,
SISO-REF-020-2007, 1 March 2007.

12) IEEE 1516-2000 - Standard for Modeling and Simulation High Level Architecture - Framework
and Rules.

13) IEEE 1516.1-2000 - Standard for Modeling and Simulation High Level Architecture - Federate
Interface Specification.

14) IEEE 1516.2-2000 - Standard for Modeling and Simulation High Level Architecture - Object
Model Template (OMT) Specification.

15) IEEE 1516.3-2003 - Recommended Practice for High Level Architecture Federation
Development and Execution Process (FEDEP).

16) SISO-STD-001.1-1999: Real-time Platform Reference Federation Object Model (RPR FOM 1.0).

17) DMO Focus Study, Cashulette C., Northrop Grumman, USAF AFRL Contract FA8750-06-C-
0017, Aug 2008.

18) Automated Signal Identification and Modeling (ASIM), System Architecture and Design, Dr.
Christopher Braun, ManTech International Corporation, August 2008.

77

8 ACRONYMS AND ABBREVIATIONS

AAA Anti Aircraft Artillery

ABP Air Battle Plan

AFRL Air Force Research Laboratory

AOC Air Operations Center

AODB Air Operations Data Base

API Application Programmer’s Interface

ARP Address Resolution Protocol

ASOC Air Support Operations Center

AWACS Airborne Warning and Control System

BACN Battlefield Airborne Communications Node

BDA Bomb Damage Assessment

BE Basic Encyclopedia

BSD Berkeley Software Distribution

C/JMTK Commercial Joint Mapping Tool Kit

C3 Command, Control, and Communications

C4ISR Command, Control, Communications, Computers, Intelligence, Surveillance,
and Reconnaissance

CADRG Compressed ARC Digital Raster Graphics

CALCM Conventional Air Launched Cruise Missile

CAP Combat Air Patrol

CCS Coordinate Conversion Service

CD Compact Disc

CDDL Common Developer and Distribution Licence

CDLA CWIN Data Logging and Analysis

CDRL Contract Data Requirements List

CGF Computer Generated Forces

CLIN Contract Line

COA Course of Action

COMINT Communications Intelligence

78

CPL Comm Parametric List (NSim)

COP Common Operating Picture

CRC Combat Reporting Center

CSAT Coordinate System Analysis Team

CSV Comma Separated Value

CTDB Compact Terrain Data Base

CWIN Cyber Warfare Integration Network

DARPA Defense Advanced Research Projects Agency

DBST Digital Battlestaff Sustainment Training

DCA Defensive Counter Air

DCW Digital Chart of the World

DIS Distributed Interactive Simulation

DMO Distributed Mission Operations

DMOTH Distributed Mission Operations Test Harness

DMPI Desired Mean Point of Impact

DMT Distributed Mission Training

DoD Department of Defense

DSAP Dynamic Situation Awareness and Prediction

DTED Digital Terrain Elevation Data

DTSim Dynamic Terrain Simulation

DVD Digital Versatile Disc

EBV Entity Bit Vector

EC Empire Challenge

EGM Earth Gravity Model

ELINT Electronics Intelligence

EPL Emitter Parametric List (NSim)

ENU East North Up

EOB Enemy Order of Battle

FAARS Future After Action Review System

FAT Final Acceptance Test

79

FCR Fire Control Radar

FEDEP Federation Development and Execution Process

FLOMMR Force Level Operational Mission Models, Rev 5

FOM Federation Object Model

FTP File Transfer Protocol

GB Gigabyte

GBU Guided Bomb Unit

GEOTRANS Geographic Translator

GIE Global Information Enterprise

GIESim Global Information Enterprise Simulation

GMT Greenwich Mean Time

GNU GNU’s Not Unix

GUI Graphical User Interface

HLA High Level Architecture

IADS Integrated Air Defense System

ICMP Internet Control Message Protocol

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

ISO International Standards Organization

ISR Intelligence, Surveillance, and Reconnaissance

JBI Joint Battlespace Infosphere

JFCOM Joint Forces Command

JMTK Joint Mapping Tool Kit

JNI Java Native Interface

JRE Java Runtime Environment

JSAF Joint Semi-Automated Forces

JSB-RD Joint Synthetic Battlespace for Research and Development

JSIMS Joint Simulation System

JTAC Joint Tactical Air Controller

JTT Joint Targeting Toolbox

80

JUO Joint Urban Operations

LGPL Lesser General Public License

LOS Line of Sight

M&S Modeling and Simulation

MARCI Multi-system Automated Remote Control and Instrumentation

MC02 Millenium Challenge 2002

METOC Meteorological/Oceanographic

MGRS Military Grid Reference System

MIDB Military Intelligence Data Base

ModSAF Modular Semi Automated Forces

MOVES Modeling, Virtual Environments, and Simulation

MS Microsoft

MSL Mean Sea Level

MSP Mensuration Services Program

MTDS Modular Tactical Datalink Simulator

NCSFIE Network-Centric SIGINT-Focused Information Enterprise

NGA National Geospatial-Intelligence Agency

NSC National Simulation Center

NSim Network-centric Simulation

NSM NCSFIE Simulation Messages

OASES Ocean, Atmosphere, and Space Environmental Services

OMT Object Model Template

OVCS Orientation and Vector Conversion Service

PDU Protocol Data Unit (DIS)

PFM Pressure Field Modification

PPS Points Per Second

PSM Portable Space Model

PVD Plan View Display

RARP Reverse Address Resolution Protocol

RDBMS Relational Data Base Management System

81

RH Human Effectiveness Directorate (of AFRL)

RI Information Directorate (of AFRL)

RID RTI Initialization Data (HLA)

RISB Decision Support Branch (of AFRL Information Directorate)

RMI Remove Method Invocation (Java)

RPR Real-time Platform Reference (FOM)

RTI Run Time Infrastructure (HLA)

SAM Surface to Air Missile

SE Standard Edition (Java)

SEDRIS Synthetic Environment Data Representation and Interchange Specification

SIGINT Signals Intelligence

SIMPLE Simulation to C4I Interchange Module for Plans Logistics and Exercises

SISO Simulation Interoperability Standards Organization

SNE Synthetic Natural Environment

SNN Simulation Network News

SOF Special Operations Forces

SOM Simulation Object Model

SRM Spatial Reference Model

SSR Simulation Sensor (NSim)

STOW Synthetic Theater of War

TADIL Tactical Data Link

TADIL-J Tactical Data Link - Joint

TAOS Total Atmosphere Ocean Services

TBMCS Theater Battle Management Core System

TCP Transmission Control Protocol

TDAL Targeting Database Access Layer

TEC Topographic Engineering Center (US Army)

TEL Transporter, Erector, Launcher

TENA Test and Training Enabling Architecture

TM Technical Manual

82

TMDB Track Management Database

TNL Target Nomination List

TR Technical Report

TSO Time Stamp Ordered

UAV Unmanned Aerial Vehicle

UDP User Datagram Protocol

UGS Unattended Ground Sensors

UPS Universal Polar Stereographic

USAF United States Air Force

USSPACECOM United States Space Command

UTC Coordinated Universal Time

UTM Universal Transverse Mercator

WGS World Geodetic System

WOC Wing Operations Center

XML Extensible Markup Language

83

9 GLOSSARY

Distributed Modeling and Simulation Terms
Attribute - A named portion of an object state.
Attribute Ownership - The property of a federate that gives it the responsibility to publish
values for a particular object attribute.
Cancellation - A mechanism used in optimistic synchronization mechanisms such as Time Warp
to delete a previously scheduled event. Cancellation is a mechanism used within the Time Warp
executive, and is normally not visible to the federate. It is implemented (in part) using the RTI’s
event retraction mechanism.
Causal Order - A partial ordering of messages based on the “causally happens before” (→)
relationship. A message delivery service is said to be causally ordered if for any two messages
M1 and M2 (containing notifications of events E1 and E2, respectively) that are delivered to a
single federate where E1 → E2, then M1 is delivered to the federate before M2.
Class - A description of a group of objects with similar properties, common behavior, common
relationships, and common semantics.
Class Hierarchy - A specification of a class-subclass, or "is-a" relationship between object
classes in a given domain.
Component Class - An object class which is a component, or part of, a "composite" object
which represents a unified assembly of many different object classes. The identification of a
Component Class in the OMT should include cardinality information.
Conservative Synchronization - A mechanism that prevents a federate from processing
messages out of time stamp order. This is in contrast to optimistic synchronization. The
Chandy/Misra/Bryant null message protocol is an example of a conservative synchronization
mechanism.
Constrained Simulation - A simulation where time advances are paced to have a specific
relationship to wallclock time. These are commonly referred to as real-time or scaled-real-time
simulations. Here, the terms constrained simulation and (scaled) real-time simulation are used
synonymously. Human-in-the-loop (e.g., training exercises) and hardware-in-the-loop (e.g., test
and evaluation simulations) are examples of constrained simulations.
Coordinated Time Advancement - A time advancement mechanism where logical clock
advances within each federate only occur after some coordination is performed among the
federates participating in the execution, e.g., to ensure that the federate never receives an event
notice in its past. ALSP, for example, uses coordinated time advancement.
Current Time (of a federate) - Same as federate time.
Event - A change of object attribute value, an interaction between objects, an instantiation of a
new object, or a deletion of an existing object that is associated with a particular point on the
federation time axis. Each event contains a time stamp indicating when it is said to occur (also
see definition of message).
Event Notice - A message containing event information.

84

Federate - A member of a HLA Federation. All applications participating in a Federation are
called Federates. In reality, this may include Federate Managers, data collectors, live entity
surrogates simulations, or passive viewers.
Federate Time - Scaled wallclock time or logical time of a federate, whichever is smaller.
Federate time is synonymous with the "current time" of the federate. At any instant of an
execution different federates will, in general, have different federate times.
Federation - A named set of interacting federates, a common federation object model, and
supporting RTI, that are used as a whole to achieve some specific objective.
Federation Execution - The federation execution represents the actual operation, over time, of a
subset of the federates and the RTI initialization data taken from a particular federation. It is the
step where the executable code is run to conduct the exercise and produce the data for the
measures of effectiveness for the federation execution.
Federation Object Model (FOM) - An identification of the essential classes of objects, object
attributes, and object interactions that are supported by an HLA federation. In addition, optional
classes of additional information may also be specified to achieve a more complete description of
the federation structure and/or behavior.
Interaction - An explicit action taken by an object, that can optionally (within the bounds of the
FOM) be directed toward other objects, including geographical areas, etc.
Interaction Parameters - The information associated with an interaction which objects
potentially affected by the interaction must receive in order to calculate the effects of that
interaction on it's current state.
Known Object - An object is known to a federate if the federate is reflecting or updating any
attributes of that object.
Logical Time - A federate’s current point on the logical time axis. If the federate’s logical time
is T, all time stamp ordered (TSO) messages with time stamp less than T have been delivered to
the federate, and no TSO messages with time stamp greater than T have been delivered; some,
though not necessarily all, TSO messages with time stamp equal to T may also have been
delivered. Logical time does not, in general, bear a direct relationship to wallclock time, and
advances in logical time are controlled entirely by the federates and the RTI. Specifically, the
federate requests advances in logical time via the Time Advance Request and Next Event
Request RTI services, and the RTI notifies the federate when it has advanced logical time
explicitly through the Time Advance Grant service, or implicitly by the time stamp of TSO
messages that are delivered to the federate. Logical time (along with scaled wallclock time) is
used to determine the current time of the federate (see definition of federate time). Logical time
is only relevant to federates using time stamp ordered message delivery and coordinated time
advances, and may be ignored (by requesting a time advance to “infinity” at the beginning of the
execution) by other federates.

85

Lookahead - A value used to determine the smallest time stamped message using the time stamp
ordered service that a federate may generate in the future. If a federate’s current time (i.e.,
federate time) is T, and its lookahead is L, any message generated by the federate must have a
time stamp of at least T+L. In general, lookahead may be associated with an entire federate (as
in the example just described), or at a finer level of detail, e.g., from one federate to another, or
for a specific attribute. Any federate using the time stamp ordered message delivery service
must specify a lookahead value.
Message - A data unit transmitted between federates containing at most one event. Here, a
message typically contains information concerning an event, and is used to notify another
federate that the event has occurred. When containing such event information, the message’s
time stamp is defined as the time stamp of the event to which it corresponds. Here, a “message”
corresponds to a single event, however the physical transport media may include several such
messages in a single “physical message” that is transmitted through the network.
Message (Event) Delivery - Invocation of the corresponding service (Reflect Attribute Values,
Receive Interaction, Instantiate Discovered Object, or Remove Object) by the RTI to notify a
federate of the occurrence of an event.
Model - A physical, mathematical, or otherwise logical representation of a system, entity,
phenomenon, or process. [DoD 5000.59]
Object - A fundamental element of a conceptual representation for a federate that reflects the
“real world” at levels of abstraction and resolution appropriate for federate interoperability. For
any given value of time, the state of an object is defined as the enumeration of all its attribute
values.
Object Model - A specification of the objects intrinsic to a given system, including a description
of the object characteristics (attributes) and a description of the static and dynamic relationships
that exist between objects.
Object Model Framework - The rules and terminology used to describe HLA object models.
Object Ownership - Ownership of the ID attribute of an object, initially established by use of
the Instantiate Object interface service. Encompasses the privilege of deleting the object using
the Delete Object service. Can be transferred to another federate using the attribute ownership
management services.
Optimistic Synchronization - A mechanism that uses a recovery mechanism to erase the effects
of out-of-order event processing. This is in contrast to conservative synchronization. The Time
Warp protocol is an example of an optimistic synchronization mechanism. Messages sent by an
optimistic federate that could later be canceled are referred to as optimistic messages.
Owned Attribute - An object attribute that is explicitly modeled by the owning federate. A
federate that owns an attribute has the unique responsibility to provide values for that attribute to
the federation, through the RTI, as they are produced.
Reflected Attribute - An object attribute that is represented but not explicitly modeled in a
federate. The reflecting federate accepts new values of the reflected attribute as they are
produced by some other federation member and provided to it by the RTI.

86

Retraction - An action performed by a federate to unschedule a previously scheduled event.
Event retraction is visible to the federate. Unlike “cancellation” that is only relevant to
optimistic federates such as Time Warp, “retraction” is a facility provided to the federate.
Retraction is widely used in classical event oriented discrete event simulations to model
behaviors such as preemption and interrupts.
RTI Initialization Data (RID) - The data required by the RTI for operation. The required data
come from two distinct sources, the Federation Object Model (FOM) product, and the Federation
Required Execution Details (FRED).
Runtime Infrastructure (RTI) - The general purpose distributed operating system software
which provides the common interface services during the runtime of an HLA federation.
Simulation - A method for implementing a model over time. Also, a technique for testing,
analysis, or training in which real-world systems are used, or where real-world and conceptual
systems are reproduced by a model. [DoD 5000.59]
Simulation Object Model (SOM) - A specification of the intrinsic capabilities that an
individual simulation offers to federations. The standard format in which SOMs are expressed
provides a means for federation developers to quickly determine the suitability of simulation
systems to assume specific roles within a federation.
Time Flow Mechanism - The approach used locally by an individual federate to perform time
advancement. Commonly used time flow mechanisms include event driven (or event stepped),
time driven, and independent time advance (real-time synchronization) mechanisms.
Time Management - A collection of mechanisms and services to control the advancement of
time within each federate during an execution in a way that is consistent with federation
requirements for message ordering and delivery.
Time Stamp (of an Event) - A value representing a point on the federation time axis that is
assigned to an event to indicate when that event is said to occur. Certain message ordering
services are based on this time stamp value. In constrained simulations, the time stamp may be
viewed as a deadline indicating the latest time at which the message notifying the federate of the
event may be processed.
Time Stamp Order (TSO) - A total ordering of messages based on the “temporally happens
before” (→t) relationship. A message delivery service is said to be time stamp ordered if for any
two messages M1 and M2 (containing notifications of events E1 and E2, respectively) that are
delivered to a single federate where E1 →t E2, then M1 is delivered to the federate before M2.
The RTI ensures that any two TSO messages will be delivered to all federates receiving both
messages in the same relative order. To ensure this, the RTI uses a consistent tie-breaking
mechanism to ensure that all federates perceive the same ordering of events containing the same
time stamp. Further, the tie-breaking mechanism is deterministic, meaning repeated executions
of the federation will yield the same relative ordering of these events if the same initial
conditions and inputs are used, and all messages are transmitted using time stamp ordering.
Transportation Service - An RTI provided service for transmitting messages between federates.
Different categories of service are defined with different characteristics regarding reliability of
delivery and message ordering.

87

True Global Time - A federation-standard representation of time synchronized to GMT or UTC
(as defined in this glossary) with or without some offset (positive or negative) applied.
Unconstrained Simulation - A simulation where there is no explicit relationship between
wallclock time and the rate of time advancements. These are sometimes called “as-fast-as-
possible” simulations, and these two terms are used synonymously here. Analytic simulation
models and many constructive “war game” simulations are often unconstrained simulations.
Wallclock Time - A federate's measurement of true global time, where the measurand is
typically output from a hardware clock. The error in this measurement can be expressed as an
algebraic residual between wallclock time and true global time or as an amount of estimation
uncertainty associated with the wallclock time measurement software and the hardware clock
errors.

88

Coordinate Conversison and Datum Transformation Terms
Coordinate – Linear or angular quantities that designate the position that a point occupies in a
given reference frame or system. Also used as a general term to designate the particular kind of
reference frame or system, such as Cartesian coordinates or spherical coordinates.

Datum – Any numerical or geometrical quantity or set of such quantities specifying the
reference coordinate system used for geodetic control in the calculation of coordinates of points
on the earth. Datums may be either global or local in extent. A local datum defines a coordinate
system that is used only over a region of limited extent. A global datum specifies the center of
the reference ellipsoid to be located at the earth's center of mass and defines a coordinate system
used for the entire earth.

Elevation – Vertical distance measured along the local plumb line from a vertical datum, usually
mean sea level or the geoid, to a point on the earth.

Ellipsoid – The surface generated by an ellipse rotating about one of its axes. Also called
ellipsoid of revolution.

Equator – The line of zero geodetic latitude; the great circle described by the semi-major axis of
the reference ellipsoid as it is rotated about the semi-minor axis.

Equipotential Surface – A surface with the same potential, usually gravitational potential, at
every point; a level surface.

Geocentric Coordinates – Cartesian coordinates (X, Y, Z) that define the position of a point
with respect to the center of mass of the earth.

Geodetic Coordinates (Geodetic Position) – The quantities of latitude, longitude, and geodetic
height (φ, λ, h) that define the position of a point on the surface of the earth with respect to the
reference ellipsoid.

Geodetic Height (Ellipsoid Height, h) – The height above the reference ellipsoid, measured
along the ellipsoidal normal through the point in question. The geodetic height is positive if the
point is outside the ellipsoid.

Geodetic Latitude (φ) – The angle between the plane of the Equator and the normal to the
ellipsoid through the computation point. Geodetic latitude is positive north of the equator and
negative south of the Equator.

Geodetic Longitude (λ) – The angle between the plane of a meridian and the plane of the prime
meridian. A longitude can be measured from the angle formed between the local and prime
meridians at the pole of rotation of the reference ellipsoid, or by the arc along the Equator
intercepted by these meridians.

Geoid – The equipotential surface in the gravity field of the Earth that approximates the
undisturbed mean sea level extended continuously through the continents. The geoid is the
surface of reference for astronomic observations and geodetic leveling. Orthometric heights are
referred to the surface of the geoid.

89

Geoid Separation (N) – The distance between the geoid and the mathematical reference
ellipsoid as measured along the ellipsoidal normal. This distance is positive outside, or negative
inside, the reference ellipsoid. Also called geoidal height; undulation of the geoid.

Grid Reference System – A plane-rectangular coordinate system usually based on, and
mathematically adjusted to, a map projection in order that geodetic positions (latitudes and
longitudes) may be readily transformed into plane coordinates and the computations relating to
them may be made by the ordinary methods of plane surveying.

Horizontal Datum – A horizontal datum specifies the coordinate system in which latitude and
longitude of points are located. The latitude and longitude of an initial point, the azimuth of a
line from that point, and the semi-major axis and flattening of the ellipsoid that approximates the
surface of the earth in the region of interest define a horizontal datum.

Map Projection – A function relating coordinates of points on a curved surface (usually an
ellipsoid or sphere) to coordinates of points on a plane. A map projection may be established by
analytical computation or, less commonly, may be constructed geometrically.

Map Scale – The ratio between a distance on a map and the corresponding actual distance on the
earth's surface.

Mean Sea Level (MSL) – The average height for the surface of the sea for all stages of the tide,
used as a reference for elevations. Also called Sea Level Datum. Mean Sea Level and the
surface of the geoid are often assumed to coincide though in reality they are approximations to
one another and can be offset by meters in some locations. GEOTRANS computes orthometric
heights. However, because the MSL surface and the geoid surface are good approximations to
each other in many locations, the more commonly used term MSL height is used to refer to these
heights.

Meridian – A north-south reference line, particularly a great circle through the geographical
poles of the earth, from which longitudes and azimuths are determined; or the intersection of a
plane forming a great circle that contains both geographic poles of the earth, and the ellipsoid.

MSL Height – An elevation or height referenced to mean sea level.

Orthometric Height – The distance of a point from the geoid measured along the direction of
gravity at that point, with heights of points outside the geoid being treated as positive.

Parallel – A line on the earth, or a representation thereof, which represents the same latitude at
every point.

Prime Meridian – A meridian from which the longitudes of all other meridians are reckoned.
This meridian, of longitude 0°, was traditionally chosen to pass through the Greenwich
Observatory in Greenwich, England. For new refined coordinate systems, the location of the
prime meridian is defined by the International earth Rotation Service, Paris, France.

90

Reference Ellipsoid – An ellipsoid, usually a bi-axial ellipsoid of revolution, whose dimensions
closely approach the dimensions of the geoid; the exact dimensions are determined by various
considerations of the section of the earth's surface concerned. .

Scale Factor (Projection) – A multiplier for reducing a distance in a map projection to the
actual distance on the chosen reference ellipsoid.

Vertical Datum – A vertical datum is the surface to which elevations are referenced. A local
vertical datum is a continuous surface, usually mean sea level, at which elevations are assumed
to be zero throughout the area of interest.

